## Приложение № 4 к главе 1 (к пункту 10.5)

## Методика расчета проволочных растяжек различной длины, расположенных под разными углами к полу вагона

При закреплении единичного груза растяжками из проволоки одинакового диаметра, с различным количеством нитей  $(\mathbf{n}_{hi})$ , различных длин  $(\mathbf{1}_i)$  и расположения  $(\alpha_i, \beta_i, \mathbf{h}_{pi})$  усилие  $\mathbf{R}_{pi}$  в рассматриваемой i-ой растяжке определяется по формулам:

## 1. От продольной инерционной силы (рисунок 1):

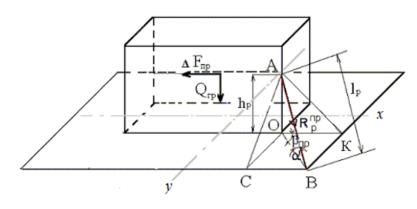



Рисунок 1

х-продольная ось вагона, у-поперечная ось вагона

$$R_{pi}^{np} = Z^{np} (n_{Hi} / 1_i) \cos \alpha_i \cos \beta_{npi}, \tag{1}$$
 
$$\Delta F_{np}$$
 
$$\text{где } Z^{np} = \frac{}{\sum\limits_{i=1}^{n_p^{np}} n_{Hi}} (\mu \sin \alpha_i + \cos \alpha_i \cos \beta_{npi}) \cos \alpha_i \cos \beta_{npi}]$$

где  $\mathbf{R}_{\mathbf{p}i}^{\mathbf{n}\mathbf{p}}$  – усилие в **i**-й растяжке от продольной инерционной силы, тс;

 ${f n}_{p}{}^{np}-$  количество растяжек, работающих одновременно в одну сторону вдоль вагона;  ${f n}_{ni}-$  количество нитей (проволок) в  ${f i}$ -й растяжке;  ${f \beta}_{npi}-$  угол между проекцией  ${f i}$ -й растяжки на горизонтальную плоскость и продольной осью вагона;

 $1_{i}$  – длина i-й растяжки, м.

2. От поперечной инерционной силы (рисунок 2):

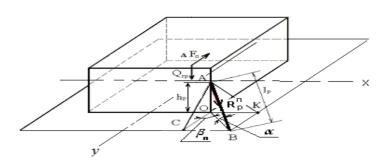



Рисунок 2 х-продольная ось вагона, у-поперечная ось вагона

$$R_{\text{pi}}^{\ \Pi} = Z^{\Pi} \left( n_{\text{Hi}} / 1_{i} \right) \cos \alpha_{i} \cos \beta_{\text{II}} , \tag{3}$$

$$\begin{array}{c} \Delta F_{\pi} \\ \\ \text{где } Z^{\pi} = & \underbrace{ \begin{array}{c} n_{p^{\pi}} & n_{\text{H}i} \\ \sum\limits_{i=1}^{n} \left[ -\frac{1}{n_{i}} \left( \mu \sin \alpha_{i} + \cos \alpha_{i} \cos \beta_{\pi i} \right) \cos \alpha_{i} \cos \beta_{\pi i} \right] \end{array} } (4)$$

где  $\mathbf{R}_{pi}^{\ \ n}$  — усилие в i-ой растяжке от поперечной инерционной силы, тс;  $\mathbf{n}_{p}^{\ \ n}$  — количество растяжек, работающих одновременно в одну сторону поперек вагона:

 ${\bf n}_{{\bf H}{\bf i}}$  – количество нитей (проволок) в і-ой растяжке;

 $eta_{ni}$  — угол между проекцией і-ой растяжки на горизонтальную плоскость и поперечной осью вагона;

 $1_i$  – длина i-ой растяжки, м.

- 3. Расчет выполняется в два этапа. Сначала по методике, изложенной в пункте 11.5 главы 1, определяют усилие в растяжках и производят ориентировочный подбор сечения растяжек по таблице 32. Затем выполняют уточненный расчет в соответствии с пунктами 1 и 2 настоящего приложения.
  - 4. Пример расчета.

Исходные данные:

К перевозке по Схеме погрузки предъявлен груз весом 14,7 т в деревянной ящичной упаковке размером 3500x1600x2500 мм, размещенный на платформе с деревянным полом и закрепленный четырьмя парами проволочных растяжек (рисунок 3).

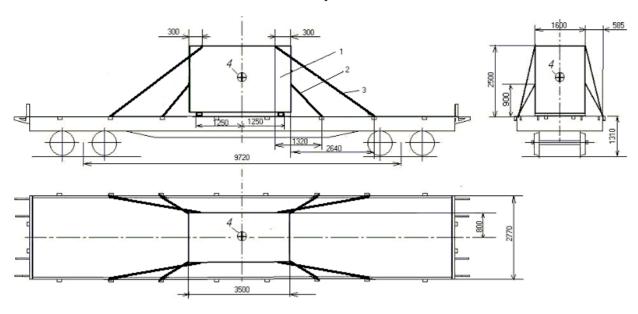



Рисунок 3 1 – груз; 2,3 – растяжка,4 – центр тяжести груза

В соответствии с выполненными предварительными расчетами имеем:

$$a_{\pi p}{=}1,15$$
 Tc/T;  $a_{\pi}{=}0,33$  Tc/T;  $a_{B}{=}0,396$  Tc/T;  $W_{\pi}{=}0,438$  Tc;  $\mu{=}0,45;$   $\Delta F_{\pi p}{=}10,33$  Tc;  $\Delta F_{\pi}{=}1,29$  Tc.

Расчет геометрических параметров и соотношений элементов растяжек целесообразно выполнять в табличной форме (таблица 1).

Таблица 1

| Геометрические<br>параметры растяжек    | Растяжка поз.2 | Растяжка поз.З |
|-----------------------------------------|----------------|----------------|
| $AO = h_p$ , M                          | 0,900          | 2,500          |
| ВК= ОС, м                               | 0,585          | 0,585          |
| KO = BC, M                              | 1,020          | 2,940          |
| $B0 = (KO^2 + BK^2)^{1/2}, M$           | 1,176          | 2,998          |
| $AB = l_p = (BO^2 + AO^2)^{1/2}, M$     | 1,480          | 3,859          |
| $Sin \alpha = AO/AB$                    | 0,608          | 0,648          |
| Cos α = BO/AB                           | 0,795          | 0,777          |
| $\cos \beta_{\pi p} = \text{KO/BO}$     | 0,867          | 0,981          |
| $\cos \beta_{\text{II}} = \text{BK/BO}$ | 0,497          | 0,195          |

4.1. Расчет по методике, изложенной в пункте 11.5 главы 1.

$$R_p^{np} = \frac{10{,}33}{2(0{,}45x0{,}608+0{,}795x0{,}867)+2(0{,}45x0{,}648+0{,}777x0{,}981)} = 2{,}56 \text{ Tc};$$

$$\mathbf{R}_{p}{}^{\pi} = \frac{1,29}{2(0,45x0,608+0,795x0,497)+2(0,45x0,648+0,777x0,195)} = 0,580 \text{ To}$$

В соответствии с таблицей 32 главы 1 для крепления груза от смещений в продольном направлении необходимы растяжки из проволоки диаметром 6 мм в 6 нитей, для крепления груза от смещения в поперечном направлении необходимы растяжки из проволоки диаметром 6 мм в 2 нити.

## 4.2. Уточненный расчет.

Усилия от продольной инерционной силы.

По формуле (2) и данным таблицы 1:

$$Z^{np} = \frac{10,33}{2(0,45x0,608+0,795x0,867)x0,795x0,867x6/1,48+} = \frac{1,349}{+2(0,45x0,648+0,777x0,981) \times 0,777x0,981 \times 6/3,859} = 1,349$$

По формуле (1) и данным таблицы 1 усилия в растяжках:

$$R_{p2}^{np} = 1,349x(6/1,480)x0,795x0,867 = 3,769 \text{ TC}$$
  
 $R_{p3}^{np} = 1,349x(6/3,859)x0,777x0,981 = 1,599 \text{ TC}$ 

Усилия от поперечной инерционной силы.

По формуле (4) и данным таблицы 1:

$$Z^{n} = \frac{1,29}{2(0,45x0,608+0,795x0,497)x0,795x0,497x2/1,480+}$$

$$-\frac{1,29}{2(0,45x0,608+0,795x0,497)x0,795x0,497x2/1,480+} = 1,646$$

$$+2(0,45x0,648+0,777x0,195)x0,777x0,195x2/3,859$$

По формуле (3) и данным таблицы 1 усилия в растяжках:

$$R_{p2}^{\Pi} = 1,646x(2/1,48)x0,795x0,497 = 0,879 \text{ TC}$$
 $R_{p3}^{\Pi} = 1,646x(2/3,859)x0,777x0,195 = 0,1293 \text{ TC}$ 

Окончательное определение количества нитей в растяжках.

Количество нитей в растяжках принимаем в соответствии с таблицей 32 главы 1, исходя из рассчитанных уточненных значений усилий от продольной и поперечной инерционных сил.

По максимальным значениям  $R_{p2}^{np} > R_{p2}^{n} = 3,769$  тс и  $R_{p3}^{np} > R_{p3}^{n} = 1,599$  тс принимаем количество нитей в растяжках:

- растяжка поз.2 восемь нитей;
- -растяжка поз.3 четыре нити.