STYRELSEN FÖR

VINTERSJÖFARTSFORSKNING

WINTER NAVIGATION RESEARCH BOARD

Research Report No 114

Teemu Heinonen

EEDI AND THE NEED FOR ICEBREAKER ASSISTANCE

Finnish Transport and Communications Agency

Finnish Transport Infrastructure Agency

Finland

Swedish Maritime Administration Swedish Transport Agency Sweden

Talvimerenkulun tutkimusraportit — Winter Navigation Research Reports ISSN 2342-4303 ISBN 978-952-311-747-1

FOREWORD

In this report no 114, the Winter Navigation Research Board presents the results of research project EEDIAssistance. Ice-going characteristics of different EEDI-compliant vessels are investigated using port call data, including data concerning icebreaker assistance and ship characteristics available from the IHS database. A clear correlation between lower power-to-deadweight ratios and greater assistance need is observed.

The Winter Navigation Research Board warmly thanks Teemu Heinonen for this report.

Helsinki

March 2021

Lauri KuulialaAnders DahlFinnish Transport and Communications AgencySwedish Maritime AdministrationJarkko ToivolaStefan ErikssonFinnish Transport Infrastructure AgencySwedish Transport Agency

AKER ARCTIC TECHNOLOGY INC REPORT

EEDI AND THE NEED FOR ICEBREAKER ASSISTANCE FOR FINNISH TRANSPORT AND COMMUCATIONS AGENCY

Copyright of Aker Arctic Technology Inc. All rights reserved. No part thereof may be disclosed, copied, duplicated or in any other way made use of, except with the prior approval of Aker Arctic Technology Inc.

10

Name of document:

EEDI and the need for icebreaker assistance

Document Responsible:	Document Reviewer(s):
Heinonen Teemu	Mattsson Tom
Document Approver: Heinonen Teemu	
Report number / Revision:	Status / Status Date:
K381 / A	Approved / 5.6.2019

Client:

Finnish Transport and Commucations Agency / Lauri Kuuliala

Revision remarks:

Summary:

The ice-going performance of different EEDI-category vessels has been investigated in this report.

Based on this data set, there seems to be a clear correlation between the powerdeadweight ratio of the merchant vessel and the need for icebreaker assistance and towing. The need for icebreaker assistance increases as the power-deadweight ratio decreases. As the power-deadweight ratio is smaller for new ships, it is expected that more icebreaker assistance and towing is needed in the future.

In addition, there seems to be a trend that for the EEDI-compliant vessels the assistance and towing times and distances are longer, and speeds are lower compared to noncompliant vessels.

All the above factors could result that more icebreaker capacity is needed in the future. However, as there are only very few actual EEDI vessels in service, it is not possible to draw very definite conclusions. It is recommended that similar research is done also for following winters in order to have more data and information about the performance of the new vessels which have been built according to the EEDI regulations.

Keywords:

EEDI; Ice Class

Client reference:	nce	Project number:	Language:		
W18-11 EEDIAssistar		30383	English		
Pages, total:	Attachments:	Distribution list:	Confidentiality:		
98	4		Public		

TABLE OF CONTENTS

1	INTRODUCTION	8
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7	ENERGY EFFICIENCY DESIGN INDEX CALCULATING EEDI REDUCTION FACTOR ICE CLASS CORRECTION FACTORS CARGO-RELATED GEAR OF GENERAL CARGO VESSELS DISPLACEMENT SHAFT GENERATORS OR MOTORS SPECIFIC FUEL CONSUMPTION	9 10 11 11 11 12 12
3 3.1 3.2 3.2.1	DATA PORT CALL DATA VESSEL DATA EEDI PHASE 0 AND 1 VESSELS, POWER-DEADWEIGHT RATIO	13 13 15 27
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	ANALYSIS & RESULTS. NEED FOR ICEBREAKER ASSISTANCE. ASSISTANCE DURATION. ASSISTANCE DISTANCE. ASSISTANCE SPEED. NEED FOR TOWING. TOWING DURATION. TOWING DISTANCE. TOWING SPEED. SUMMARY ON ASSISTANCE AND TOWING. EFFECT OF POWER-DEADWEIGHT RATIO.	32 33 36 39 42 45 45 50 52 54 55
5	CONCLUSIONS	59
APPEN	IDIX 1: LIST OF PORTS	60
APPEN	IDIX 2: ICE CHARTS	61
APPEN	IDIX 3: SUMMARY OF THE ASSISTANCE EVENTS	93
APPEN	IDIX 4: SUMMARY OF THE TOWING EVENTS	96

APPENDICES

Appendix 1	List of Ports
Appendix 2	Ice charts
Appendix 3	Summary of assistance events
Appendix 4	Summary of towing events

LIST OF FIGURES

Figure 3-1: A schematic presentation of the geographical locations of the different
port groups14
Figure 3-2: Calculated EEDI values of the general cargo ships in the data set16
Figure 3-3: Calculated EEDI values of the bulkers in the data set16
Figure 3-4: Calculated EEDI values of the tankers in the data set17
Figure 3-5: Calculated EEDI values of the gas carriers in the data set17
Figure 3-6: Calculated EEDI values of the RoRo cargo ships in the data set18
Figure 3-7: Calculated EEDI values of the RoRo passenger ships in the data set
The three vessels with clearly higher EEDI value are built in the 1970's18
Figure 3-8: Calculated EEDI values of the container ships in the data set
Figure 3-9: Calculated EEDI values of the vehicle carriers in the data set. Only
vessels with DWT/GT<0.3 presented19
Figure 3-10: Histogram of the EEDI-compliancy of different vessels observed
during winter 2017-201820
Figure 3-11: Summary on how the port calls are divided based on the EEDI-
compliancy on winter 2018-201720
Figure 3-12: Histogram of the EEDI-compliancy of different vessels observed
during winter 2016-201721
Figure 3-13: Summary on how the port calls are divided based on the EEDI-
compliancy on winter 2016-201721
Figure 3-14: Histogram of the EEDI-compliancy of different vessels observed
during winter 2015-2016
Figure 3-15: Summary on how the port calls are divided based on the EEDI-
compliancy on winter 2015-2016
Figure 3-16: Summary of the ship type of different vessels observed during winter
2017-2018
Figure 3-17: Summary on how the port calls are divided based on the ship type on
winter 2017-2018
Figure 3-18: Summary of the ship type of different vessels observed during winter
Figure 3-19: Summary on now the port calls are divided based on the ship type on
Winter 2016-2017
Figure 3-20: Summary of the ship type of different vessels observed during winter
ZUID-ZUID
Figure 3-21: Summary on now the port calls are divided based on the ship type on
Winter 2015-2016
Figure 3-22. Histogram of the size of all ships during winters 2015-2016 to 2017-
ZUIO
rigure 3-23. Fistografi of the ship size of all general cargo ships observed during
Figure 2.24: Engine newer as a function of deadwaight for Do Do corres obing 22
Figure 3-24. Engine power as a function of deadweight for general earge ships20
Figure 3-25. Engine power as a function of deadweight for general cargo sinps29
Figure 3-20. Distribution of the power-deadweight ratio based on the EEDI-
refer to cases where the different distributions overlap
Figure 3-27: Engine nower as a function of deadweight for tankers
Figure 3-28: Distribution of the nower-deadweight ratio based on the EED!
compliancy for tankers. The colors which are not listed in the legend refer to access
where the different distributions overlan
where the unterent ustributions overlap

Figure 3-29: Engine power as a function of deadweight for bulkers. The one with clearly higher power compared to others has IA-Super ice-class	vessel 31
Figure 3-30: Distribution of the power-deadweight ratio based on the EEDI-	
compliancy for bulkers. The colors which are not listed in the legend refer to	cases
where the different distributions overlap	31
Figure 4-1: Power-deadweight ratio versus assistance speed	55
Figure 4-2: Power-deadweight ratio versus assistance duration.	56
Figure 4-3: Power-deadweight ratio versus assistance miles	56
Figure 4-4: Power-deadweight distribution of the assisted and non-assisted	
vessels, period 3. The dark brown color refers to a case where the two	
distributions overlap.	57
Figure 4-5: Power-deadweight distribution of the assisted and non-assisted	
vessels, period 4. The dark brown color refers to a case where the two	
distributions overlap.	57
Figure 4-6: Power-deadweight distribution of the towed and non-towed vesse period 3. The dark brown color refers to a case where the two distributions	≱ls,
overlap.	58
Figure 4-7: Power-deadweight distribution of the towed and non-towed vesse period 4. The dark brown color refers to a case where the two distributions	els,
overlap	58

LIST OF TABLES

Table 2-1: Ship types which are affected by the EEDI regulations, EEDI	40
Implementation phases, cut-off limits and reduction factors.	10
Table 3-1: Summary of the new Phase 0 & 1 vessels.	27
Table 4-1: Summary on the need for icebreaker assistance during winter 2016-	
2017. Only the period and port group combinations in which there has been	
voyages are shown.	33
Table 4-2: Summary on the need for icebreaker assistance during winter 2015-	
2016. Only the period and port group combinations in which there has been	
voyages are shown.	34
Table 4-3: Summary on the need for icebreaker assistance during winter 2017-	
2018. Only the period and port group combinations in which there has been	
voyages are shown.	35
Table 4-4: Average assistance durations [hours] during winter 2017-2018. Only	the
period and port group combinations in which there has been assistance are	
shown	36
Table 4-5: Average assistance durations [hours] during winter 2016-2017. Only	the
period and port group combinations in which there has been assistance are	
shown	37
Table 4-6: Average assistance durations [hours] during winter 2015-2016. Only	the
period and port group combinations in which there has been assistance are	
shown	38
Table 4-7: Average assistance distance [nautical miles] during winter 2017-2018	8.
Only the period and port group combinations in which there has been assistanc	е
are shown	39
Table 4-8: Average assistance distance [nautical miles] during winter 2016-201	7.
Only the period and port group combinations in which there has been assistanc	е
are shown	40

Table 4-9: Average assistance distance [nautical miles] during winter 2015-2016. Only the period and port group combinations in which there has been assistance
Table 4-10: Average assistance speeds [knots] during winter 2017-2018. Only the period and port group combinations in which there has been assistance are
shown42
Table 4-11: Average assistance speeds [knots] during winter 2016-2017. Only the period and port group combinations in which there has been assistance are
shown
Table 4-12: Average assistance speeds [knots] during winter 2015-2016. Only the period and port group combinations in which there has been assistance are
shown44
Table 4-13: Summary on the need for towing during winter 2017-2018. Only the
period and port group combinations in which there has been voyages are shown45 Table 4-14: Summary on the need for towing during winter 2016-2017. Only the
period and port group combinations in which there has been voyages are shown46
Table 4-15: Summary on the need for towing during winter 2015-2016. Only the
period and port group combinations in which there has been voyages are shown. 47
Table 4-16: Average towing durations [hours] during winter 2017-2018. Only the
period and port group combinations in which there has been towing are shown48
Table 4-17: Average towing durations [hours] during winter 2016-2017. Only the
period and port group combinations in which there has been towing are shown49
Table 4-18: Average towing durations [hours] during winter 2015-2016. Only the
period and port group combinations in which there has been towing are shown49
Table 4-19: Average towing distance [nautical miles] during winter 2017-2018.
Only the period and port group combinations in which there has been towing are
shown
Table 4-20: Average towing distance [nautical miles] during winter 2016-2017.
Only the period and port group combinations in which there has been assistance
are shown51
Table 4-21: Average towing distance [nautical miles] during winter 2015-2016.
Only the period and port group combinations in which there has been assistance are shown
Table 4-22: Average towing speeds [knots] during winter 2017-2018
Table 4-23: Average towing speeds [knots] during winter 2016-2017
Table 4-24: Average towing speeds [knots] during winter 2015-2016
Table 4-25: Summary for icebreaker assistance
Table 4-26: Summary for icebreaker towing. 54

NOMECLATURE & ABBREVIATIONS

AE	Auxiliary engine
В	Breadth
C _F	Carbon factor
CO ₂	Carbon dioxide
DWT	Deadweight
EEDI	Energy efficiency design index
f _i	Correction factor for general cargo ships
f _{iCb}	Correction factor for improved ice-going capability
f _{jRoRo}	Ship specific correction factor for ro-ro ships
f ₁	Correction factor for the loss of deadweight
GT	Gross tonnage
HFO	Heavy fuel oil
IMO	International maritime organization
LNG	Liquified natural gas
L _{pp}	Length between perpendiculars
ME	Main engine
MEPC	Marine Environment Protection Committee
P	Power
Ro-Ro	Roll on – roll off
SFC	Specific fuel consumption
Τ	Draught
∇	Displacement
	•

1 INTRODUCTION

The energy efficiency design index (EEDI) will reduce the propulsion power of merchant ships in order to reduce harmful CO_2 -emissions. On the other hand, it is possible that the reduced propulsion power and unconventional bowshapes, which are highly optimized for open-water, could affect negatively to the ice-going capability of the merchant vessels. This study aims to provide statistical information regarding how new EEDI compliant vessels are performing in the actual winter conditions compared to older, more powerful vessels. From this information it is possible to investigate how much icebreaker assistance the EEDI compliant vessels need and what are the assistance speeds with EEDI compliant vessels compared to non-EEDI compliant vessels. These factors can influence on the size of the future icebreaker fleet.

The objective is to gather statistics of all the vessels entering the ports of the northern Baltic Sea ports during the icebreaking season and also to gather statistical information of the icebreakers' assistance events during the season. The EEDI compliant vessels will be distinguished from this data and compared to other vessels.

2 ENERGY EFFICIENCY DESIGN INDEX

The energy efficiency index is mandatory for new vessels of certain ship types and sizes (Table 2-1). The index is not described in detail in this report as the focus is in the effects EEDI. However, a short summary of the EEDI is presented below.

The energy efficiency index basically represents the amount of CO_2 -emissions related to the carried cargo:

 $EEDI = \frac{CO_2 \text{ emission}}{\text{transport work}} = EEDI = \frac{\text{Engine power x SFC x C}_{\text{F}}}{\text{DWT x speed}} (\text{gCO}_2/\text{ton-mile})$

In practice the formula used to calculate the EEDI-index is more complicated taking into account ship specific design elements with different type of correction factors (IMO resolution MEPC.308(73):

The vessels which are part of the EEDI regulations must attain a smaller EEDI value than the required EEDI related to their specific vessel type and size. The required EEDI is calculated based on ship type specific reference line which represents the EEDI as a function of ship size. Reduction factors are applied to the reference EEDI depending on the order date of the vessel.

Currently, some ships built in accordance with Phase 0 and Phase 1 requirements of EEDI are already sailing in the Northern Baltic Sea area.

Table 2-1: Ship	types wh	nich are a	ffected b	y the	EEDI I	regulations,	EEDI
implementation	phases,	cut-off lin	nits and r	reduct	tion fac	ctors.	

7		Phase 0	Phase 1	Phase 2	Phase 3	
Ship Type	Size	1 Jan 2013 -	1 Jan 2015 -	1 Jan 2020 -	1 Jan 2025	
		31 Dec 2014	31 Dec 2019	31 Dec 2024	and onwards	
Dullananian	20,000 DWT and above	0	10	20	30	
Bulk carrier	10,000 - 20,000 DWT	n/a	0-10*	0-20*	0-30*	
Constanting	10,000 DWT and above	0	10	20	30	
Gas carrier	2,000 - 10,000 DWT	n/a	0-10*	0-20*	0-30*	
Taslas	20,000 DWT and above	0	10	20	30	
Tanker	4,000 - 20,000 DWT	n/a	0-10*	0-20*	0-30*	
Containership	15,000 DWT and above	0	10	20	30	
Container ship	10,000 - 15,000 DWT	n/a	0-10*	0-20*	0-30*	
Concerned Concerned white a	15,000 DWT and above	0	10	15	30	
General Cargo ships	3,000 - 15,000 DWT	n/a	0-10*	0-15*	0-30*	
Refrigerated cargo	5,000 DWT and above	0	10	15	30	
carrier	3,000 - 5,000 DWT	n/a	0-10*	0-15*	0-30*	
	20,000 DWT and above	0	10	20	30	
Combination carrier	4,000 - 20,000 DWT	n/a	0-10*	0-20*	0-30*	
LNG carrier***	10,000 DWT and above	n/a	10**	20	30	
Ro-ro cargo ship (vehicle carrier)***	10,000 DWT and above	n/a	5**	15	30	
1	2,000 DWT and above	n/a	5**	20	30	
Ro-ro cargo ship***	1,000 – 2,000 DWT	n/a	0-5*,**	0-20*	0-30*	
	1000 DWT and above	n/a	5**	20	30	
Ro-ro passenger ship***	250 1,000 DWT	n/a	0-5*,**	0-20*	0-30*	
Cruise passenger ship*** having	85,000 GT and above	n/a	5**	20	30	
non-conventional propulsion	25,000 - 85,000 GT	n/a	0-5*,**	0-20*	0-30*	

Note: n/a means that no required EEDI applies.

* Reduction factor to be linearly interpolated between the two values dependent upon ship size. The lower value of the reduction factor is to be applied to the smaller ship size.

- ** Phase 1 commences for those ships on 1 September 2015.
- *** Reduction factor applies to those ships delivered on or after 1 September 2019, as defined in paragraph 43 of regulation 2.

2.1 CALCULATING EEDI

As there is only limited number of vessels in service which have been built to comply with the EEDI regulations, the EEDI is calculated also for older vessels which are not part of the EEDI regulations based on their age. This allows to have more data to compare the performance of the EEDI compliant and non-compliant vessels.

The EEDI calculations are done based on the IMO resolution MEPC.308(73). However, following simplifications, limitations and differences as listed in the next chapters should be noted.

2.2 REDUCTION FACTOR

Phase 1 reduction factors are used to calculate the EEDI for old vessels as it is the current EEDI phase. This means that the older vessels are compared whether they are compliant to Phase 1 regulations.

2.3 ICE CLASS CORRECTION FACTORS

The ice class correction factors are used as presented in MEPC.308(73) which have replaced the old correction factors given in MEPC.245(66). The new correction factors are related to the vessel's deadweight instead of its length. The ice class correction factors take the additional engine power, steel weight and lower block coefficient of an ice class ship when compared to an open-water ship into account.

2.4 CARGO-RELATED GEAR OF GENERAL CARGO VESSELS

It is not possible to attain information regarding the cargo-related gear (cranes, side loaders, Ro-Ro ramps) of general cargo ships and therefore it is not possible to calculate correction factor f_i , which takes the loss of deadweight into account for general cargo ships (MEPC.308(73), Annex 5, chapter 2.14). However, the error is assumed to be insignificant.

2.5 **DISPLACEMENT**

Displacement data is not available for all vessels. Displacement is needed for following corrections:

- Ice class related capacity correction for improved ice-going capability *f_{iCb}*. This correction is used only for tankers, bulkers and general cargo ships (MEPC.308(73), Annex 5, Chapter 2.2.11.1).
- Ship specific correction factor *f_{jRoRo}* for ro-ro cargo ships and ro-ro passenger ships (MEPC.308(73), Annex 5, chapter 2.2.8.3).
- Ship specific correction factor f_j for general cargo ships (MEPC.308(73), Annex 5, chapter 2.2.8.4).

The correction factors f_{iCb} and f_j for general cargo ships are assumed to be 1 if the displacement data is missing. These correction factors are close to 1 or exactly 1 in most cases and therefore the error due to missing displacement is assumed to be small.

On the other hand, for Ro-Ro vessels it is almost impossible to fulfil the EEDI requirement without the correction factor f_{jRoRo} . Therefore, the missing displacement is approximated with following formulas in order to calculate the correction factor:

- $\nabla_{roro, cargo} = 1.6926 * DWT 24.12$
- $\nabla_{roro, passenger} = 0.38548 * GT + 5256.1$

These approximations are based on the data of ro-ro ships present in the port call data of 2017-2018 winter.

2.6 SHAFT GENERATORS OR MOTORS

The effect of shaft generators and motors or other energy efficient technologies are not taken into account in the EEDI calculations as the data of these devices is not available.

2.7 SPECIFIC FUEL CONSUMPTION

For the sake of simplicity, the specific fuel consumption of each vessel is estimated based on the engine type. The official reference EEDI lines have been calculated with constant 190 g/kWh consumption for main engines and 215 g/kWh for auxiliary engines and similar values are also used in this study.

Following values for specific fuel consumption are used when calculating the EEDI:

- 4-stroke diesel engine = 190 g/kWh
- 2-stroke diesel engine = 175 g/kWh
- 4-stroke dual-fuel engine running on LNG = 160 g/kWh (+ 6 g/kWh for pilot fuel)
- 2-stroke dual-fuel engine running on LNG = 147 g/kWh (+ 6 g/kWh for pilot fuel)
- Auxiliary engines = 215 g/kWh

Different values are used depending on the stroke type of the engine. The reason for this is that two-stroke engines are larger and heavier compared to 4-stroke engines. This affects to the ship parameters and therefore is taken into account in the calculations.

Following carbon content C_F values are used in the calculations:

- LNG = 2.750
- HFO = 3.114

3 DATA

The study is based on two sets of data:

- Port call data of the Finnish and Swedish ports
- Vessel data from IHS Seaweb database

The vessel data and port call data are combined based on the IMO number of the vessels.

The two data sets are described in more detail in the following chapters.

3.1 PORT CALL DATA

Port call data contains the port call data of the Finnish and Swedish ports including icebreaker assistance information during the periods when there have been traffic restrictions due to ice conditions. The data is available for winters 2017-2018, 2016-2017 and 2015-2016. Data is provided by the Finnish Transport Agency. The data contains following information (information both for arrival & departure):

- IMO number
- Name of the vessel
- Ice class
- Ship type
- Did the vessel need icebreaker assistance during its visit?
- Distance assisted
- Duration of the assistance
- Was the vessel towed?
- Distance of towing
- Duration of towing

Only the ports of the northern Baltic Sea are included in the research. The ports are categorized into port groups based on their geographical position:

- Finland:
 - Area 1 (FIN_1): North of Raahe
 - Area 2 (FIN_2): Raahe Vaasa
 - Area 3 (FIN_3): Vaasa Rauma

- Area 4 (FIN_4): Rauma Hanko
- Area 5 (FIN_5): Hanko Kotka
- Area 6 (FIN_6): East of Kotka
- Sweden:
 - Area 1 (SWE_1): North of Haraholmen
 - o Area 2 (SWE_2): Haraholmen Umeå
 - Area 3 (SWE_3): Umeå Söderhamn
 - Area: 4 (SWE_4): Söderhamn Stockholm

The geographical locations of the port groups are presented in. Figure 3-1. A detail list of the ports in each port group is presented in Appendix 1.

All the vessels which are discussed in the following chapters refer to ships which have visited the ports listed above during winters 2015-2016 to 2017-2018.

Figure 3-1: A schematic presentation of the geographical locations of the different port groups.

3.2 VESSEL DATA

Vessel data is acquired from IHS Maritime Seaweb database. This data is used to calculate the EEDI index and other ship parameters of all vessels listed in the port call data. Following information is gathered:

- IMO number
- Vessel name
- Order Date
- Ship type
- Main particulars: L_{pp}, B, T
- Deadweight
- Gross Tonnage
- o Displacement
- Cargo tank volume
- o Service speed
- Main engine power
- Engine stroke type
- o Fuel type

The ships are divided into following categories based on their EEDI compliance:

- Phase 0 & 1: new vessels which have been built according to the EEDI regulations.
- **EEDI-compliant:** old vessels which do not need to comply the EEDI regulations based on their age but fulfil the required EEDI (Phase 1).
- **Non-compliant**: old vessels which do not need to comply the EEDI regulations and have larger attained EEDI value than the required EEDI (Phase 1).
- N/A: ships which are not part of the EEDI regulations due to their size (cut-off limits) or type.

Only ice classes IA Super, IA, IB, IC are included in the data set and analysis. In addition, only vessels which have visited the ports listed in the previous chapter are included in the analysis. The calculated EEDI values for different vessel types of the data set are presented in Figure 3-2 through Figure 3-9. In Figure 3-10 to Figure 3-15 is presented summaries of the EEDI-compliancy of the different vessels and how the port calls are divided based on the EEDI-compliancy on different winters. In Figure 3-16 to Figure 3-21 is presented how different ship types are represented.

Figure 3-2: Calculated EEDI values of the general cargo ships in the data set.

Figure 3-3: Calculated EEDI values of the bulkers in the data set.

Figure 3-4: Calculated EEDI values of the tankers in the data set.

Figure 3-5: Calculated EEDI values of the gas carriers in the data set.

Figure 3-6: Calculated EEDI values of the RoRo cargo ships in the data set.

Figure 3-7: Calculated EEDI values of the RoRo passenger ships in the data set The three vessels with clearly higher EEDI value are built in the 1970's.

Figure 3-8: Calculated EEDI values of the container ships in the data set.

Figure 3-9: Calculated EEDI values of the vehicle carriers in the data set. Only vessels with DWT/GT<0.3 presented.

Figure 3-10: Histogram of the EEDI-compliancy of different vessels observed during winter 2017-2018.

Figure 3-11: Summary on how the port calls are divided based on the EEDIcompliancy on winter 2018-2017.

Figure 3-12: Histogram of the EEDI-compliancy of different vessels observed during winter 2016-2017.

Figure 3-13: Summary on how the port calls are divided based on the EEDIcompliancy on winter 2016-2017.

Figure 3-14: Histogram of the EEDI-compliancy of different vessels observed during winter 2015-2016.

Figure 3-15: Summary on how the port calls are divided based on the EEDIcompliancy on winter 2015-2016.

It is interesting to observe that majority of the old vessels would fulfil required EEDI value (Phase 1) related their ship type and size.

Summary of the size (deadweight) of all different ships which have visited ports during winters 2015-2016 to 2017-2018 is presented Figure 3-22. It can be seen that the majority of the vessels are relatively small, typically less than 10 000 DWT.

From Figure 3-16 to Figure 3-21 it is clearly visible that majority of the port calls are made by general cargo ships. In Figure 3-23 is presented a histogram of the size of the different general cargo ships which have been observed during the past three winters.

A typical vessel during the observed winters has been a general cargo ship with deadweight between 4000 - 6000 tons. This is close to the cut-off limit (3000 DWT), making it probably easier to fulfil the EEDI requirements. This most likely explains the big number of EEDI compliant old vessels.

Figure 3-22: Histogram of the size of all ships during winters 2015-2016 to 2017-2018.

Figure 3-23: Histogram of the ship size of all general cargo ships observed during winters 2015-2016 to 2017-2018.

3.2.1 EEDI PHASE 0 AND 1 VESSELS, POWER-DEADWEIGHT RATIO

Based on the figures and summaries of the previous chapter, it is evident that only few new EEDI regulated vessels have visited the Finnish and Swedish ports during the previous three winters. A summary of the different Phase 0 and Phase 1 vessels is presented in Table 3-1.

EEDI_Phase	ShipType	ICE	OrderDate	LengthBP	Breadth	Draught	Deadweight	ServiceSpeed	TotalKWMainEng
Phase 1	Ro-Ro Cargo Ship	IA	01.11.2015	182	26.2	7.63	12 784	18	12000
Phase 1	General Cargo Ship	IA	01.01.2015	101.2	13.6	6.13	5 019	10.5	1650
Phase 1	General Cargo Ship	IA	01.01.2015	101.2	13.6	6.13	5 019	10.5	1650
Phase 1	General Cargo Ship	IA	01.03.2015	186.4	28.5	11	37 125	14.8	10470
Phase 1	General Cargo Ship	IA	01.03.2015	186.4	28.5	11	37 130	14.8	10470
Phase 1	General Cargo Ship	IA	01.09.2015	84.99	13.35	7.23	5 790	12	1950
Phase 1	General Cargo Ship	IA	01.09.2015	100.59	13.35	6.91	6 706	12	1950
Phase 0	Chemical/Products Tanker	IA	01.02.2013	176	27.4	11.916	38 734	14	8502
Phase 0	Chemical/Products Tanker	IA	01.02.2013	176	27.4	11.916	38 734	14	8502
Phase 0	Chemical/Products Tanker	IA	01.02.2013	176	27.34	11.916	38 734	14	8502
Phase 0	Chemical/Products Tanker	IA	01.02.2013	176	27.34	11.916	38 734	14	8502
Phase 0	Chemical/Products Tanker	IA	01.04.2013	176	27.4	11.92	38 734	14.5	8502
Phase 0	Chemical/Products Tanker	IA	01.04.2013	176	27.4	11.92	38 734	14.5	8502
Phase 0	Chemical/Products Tanker	IA	01.04.2013	176	27.4	11.916	38 734	14.5	8502
Phase 0	Chemical/Products Tanker	IB	01.12.2013	176	27.4	11.9	39 067	14.4	7290
Phase 0	Crude Oil Tanker	IB	01.03.2014	242	44	15.023	112 949	15	11820
Phase 0	Bulk Carrier	IC	01.05.2013	177	32	10.5	38 690	14	6100
Phase 0	Bulk Carrier	IC	01.05.2013	195.5	23.76	10.857	34 564	14	6400
Phase 0	Bulk Carrier	IC	01.07.2013	176.97	32	10.518	38 792	15.1	6100
Phase 0	Bulk Carrier	IC	01.11.2013	176.97	32	10.5	38 709	14	6100
Phase 0	Bulk Carrier	IA	01.10.2013	220	32.26	14.42	76 180	14.5	12000
Phase 0	Bulk Carrier	IA	01.10.2013	220	32.26	14.429	75 800	14.5	12000
Phase 0	Bulk Carrier	IC	01.10.2013	225.53	32.26	14.5	80 959	14.3	9930

Table 3-1: Summary of the new Phase 0 & 1 vessels.

Total of 23 different Phase 0 & 1 compliant vessels have visited the Finnish and Swedish ports during the previous three winters. Some of the vessels are clearly sister ships based on the similar particulars, limiting the amount of totally different designs built according to the EEDI-regulations.

The engine power as a function of deadweight and distributions of the deadweightpower ratios for different vessel types are presented in Figure 3-24 to Figure 3-30. Only vessel types which contain new vessels built to fulfil EEDI regulations are presented. The figures include all different vessels observed in the data set of past three winters for each vessel type. It should be noted that the ice classes are not categorized in the figures as all ice classes (IA-Super, IA, IB & IC) are included in them. The deadweight-power distribution figures are normalized based on probability in order to compare different sample sizes of different EEDI-compliancy categories. The N/A category is not included in the distributions for the sake of simplicity.

For general cargo ships, tankers and bulkers it seems that the power ratio of the new Phase 0 and 1 compliant vessels is on the lower edge compared to other vessels meaning that the new EEDI-regulated vessels seem to be less powerful. However, it should be noted that there are only few different EEDI-compliant designs to compare to older vessels.

For Ro-Ro cargo ships it is not possible to conclude anything about the powerdeadweight ratios as there has been only one vessel which has been built according to the EEDI regulations.

Figure 3-24: Engine power as a function of deadweight for Ro-Ro cargo ships.

Figure 3-25: Engine power as a function of deadweight for general cargo ships.

<u>Figure 3-26: Distribution of the power-deadweight ratio based on the EEDI-</u> <u>compliancy for general cargo ships. The colors which are not listed in the legend</u> refer to cases where the different distributions overlap.

Figure 3-27: Engine power as a function of deadweight for tankers.

Figure 3-28: Distribution of the power-deadweight ratio based on the EEDIcompliancy for tankers. The colors which are not listed in the legend refer to cases where the different distributions overlap.

Figure 3-29: Engine power as a function of deadweight for bulkers. The one vessel with clearly higher power compared to others has IA-Super ice-class.

<u>Figure 3-30: Distribution of the power-deadweight ratio based on the EEDI-</u> <u>compliancy for bulkers. The colors which are not listed in the legend refer to cases</u> <u>where the different distributions overlap.</u>

4 ANALYSIS & RESULTS

As described in chapter 3, the vessels are categorized based on their EEDI compliancy (only ice classes IA-Super, IA, IB and IC are included) and also the ports are categorized into different groups. In addition, the data is also categorized based on the time of the winter. Following categories are used in the analysis:

- Period 1: Beginning of the season to mid-January (15. day)
- Period 2: Mid-January to mid-February
- Period 3: Mid-February to mid-March
- Period 4: Mid-March to mid-April
- Period 5: Mid-April to the end of the season

Categorization of the ports and the period allows to have relatively fair comparison between the different vessels as comparison is done in somewhat similar ice conditions based on the geographical location and time of the winter.

Example ice charts for each winter are presented in Appendix 2 (charts for the 1. and 15. day of the month). The winters 2015-2016 and 2016-2017 can be described mild while the winter 2017-2018 can be described as average.

The need for ice icebreaker assistance, average assistance speed, distance and duration are presented in the following chapters. The same analyses are also done for towing. In the analyses each port call is divided into arrival and departure and the above-mentioned quantities are investigated separately for both. The arrivals and departures are referred as voyages in the analysis.

In winter 2016-2017 there has been problems in port call registration for the Swedish ports. There are no port calls to Swedish ports after 24.2.2017. In addition, port groups FIN_4, FIN_5, FIN_6, SWE_3 and SWE_4 are excluded from the data for winter 2016-2017 as it is possible that the port data in these categories is compromised due to the problems in the port call registrations.

For winter 2015-2016 it is possible that some of the data port call data is compromised. Early and late in the season some of the voyages were registered to have occurred under traffic restriction even though there have not been restrictions in the given ports. Clearly erroneous information has been disregarded but it is possible that some of the data is still compromised. Therefore the data of 2015-2016 winter should be reviewed with caution.

4.1 NEED FOR ICEBREAKER ASSISTANCE

The need for icebreaker assistance is presented as a percentage on how many voyages there was icebreaker assistance for each vessel group. The need for icebreaker assistances are presented in Table 4-1 to Table 4-3. It should be noted that in some cases there has been only couple vessels from which the relative proportion is calculated. More detail statistics about how many voyages have been done totally and how much icebreaker assistance was needed is presented in Appendix 3.

PERIOD	PORT_Group	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
1	FIN_1	44 %	100 %	61%	37 %	14 %
	FIN_2	1%		2 %	0 %	0 %
	SWE_1	0 %	0 %	0 %	0 %	0 %
	SWE_2	8%		15 %	0 %	0 %
2	FIN_1	50 %		89 %	40 %	9 %
	FIN_2	9 %	0 %	13 %	1%	0 %
	SWE_1	3 %		3 %	4 %	0 %
	SWE_2	8 %		17 %	0 %	0 %
3	FIN_1	56 %		91 %	59 %	11 %
	FIN_2	38 %	36 %	51 %	6 %	7 %
	FIN_3	6 %		6 %	0 %	
	SWE_1	4 %		6 %	0 %	0 %
	SWE_2	7 %		18 %	0 %	0 %
4	FIN_1	65 %		91 %	54 %	21 %
	FIN_2	28 %	8 %	40 %	4 %	8%
	FIN_3	4 %		4 %	0 %	
5	FIN_1	20 %	0 %	28 %	8 %	26 %
	FIN 2	19 %	0 %	22 %	0 %	14 %

<u>Table 4-1: Summary on the need for icebreaker assistance during winter 2016-2017. Only the period and port group combinations in which there has been voyages are shown.</u>

Table 4-2: Summary on the need for icebreaker assistance during winter 2015-2016. Only the period and port group combinations in which there has been voyages are shown.

PERIOD	PORT_Group	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1	11 %		17 %	0 %	0 %
	FIN_2	19 %		28 %	8 %	0%
1	SWE_1	15 %		18 %	25 %	0 %
1	SWE_2	22 %		33 %	0 %	25 %
	SWE_3	0 %		0 %	0 %	0 %
	SWE_4	0 %		0 %	0 %	
	FIN_1	57 %		70 %	22 %	55 %
	FIN_2	22 %		29 %	5 %	0 %
	FIN_3	2 %		2 %	0 %	0 %
	FIN_4	0%		0 %	0 %	0 %
2	FIN_5	0%	0 %	0 %	0 %	0 %
2	FIN_6	4 %	0 %	3 %	3 %	19 %
	SWE_1	33 %		38 %	11 %	29 %
	SWE_2	26 %	50 %	59 %	2 %	0 %
	SWE_3	2 %		2 %	0 %	0 %
	SWE_4	2 %		3 %	0 %	0 %
	FIN_1	63 %		86 %	26 %	29 %
	FIN_2	19 %		26 %	1 %	20 %
	FIN_3	2 %	0 %	3 %	0 %	0 %
	FIN_4	0 %		0 %	0 %	0 %
3	FIN_5	0 %	0 %	0 %	0 %	0 %
5	FIN_6	0 %	0 %	0 %	0 %	0 %
	SWE_1	59 %		68 %	29 %	64 %
	SWE_2	21 %		48 %	1 %	8 %
	SWE_3	2 %		3 %	0 %	5 %
	SWE_4	2 %		2 %	0 %	0 %
	FIN_1	66 %		87 %	26 %	52 %
	FIN_2	29 %		37 %	2 %	20 %
	FIN_3	0 %	0 %	0 %	0 %	0 %
	FIN_4	0 %		0 %	0 %	0 %
4	FIN_5	0 %	0 %	0 %	0 %	0 %
-	FIN_6	0 %		0 %	0 %	0 %
	SWE_1	41 %		51 %	27 %	14 %
	SWE_2	16 %		31 %	0 %	0 %
	SWE_3	1%		0 %	5 %	0 %
	SWE_4	0 %		0 %		0 %
	FIN_1	18 %		24 %	4 %	19 %
	FIN_2	12 %		14 %	0 %	0%
5	SWE_1	15 %		20 %	0 %	0 %
	SWE_2	6%		6 %	0 %	
	SWE_3	0%		0 %		
	SWE_4	0 %		0 %		

Table 4-3: Summary on the need for icebreaker assistance during winter 2017-2018. Only the period and port group combinations in which there has been voyages are shown.

PERIOD	PORT_Group	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1	10 %	0 %	14 %	6 %	4 %
	FIN_2	0 %		0 %	0 %	
1	SWE_1	1%	0 %	2 %	0 %	0 %
	SWE_2	1%	0 %	2 %	0 %	0 %
	SWE_3	0 %		0 %	0 %	
	FIN_1	66 %	100 %	86 %	40 %	43 %
	FIN_2	7 %	0 %	10 %	3 %	0 %
	FIN_3	1%		1%	0 %	0 %
	FIN_4	0 %		0 %	0 %	0 %
2	FIN_5	0 %	0 %	1 %	0 %	0 %
2	FIN_6	2 %	0 %	3 %	0 %	0 %
	SWE_1	64 %	100 %	77 %	18 %	75 %
	SWE_2	20 %		45 %	0 %	30 %
	SWE_3	3 %	0 %	4 %	0 %	0 %
	SWE_4	1 %		2 %	0 %	0 %
	FIN_1	80 %	89 %	91 %	57 %	84 %
	FIN_2	52 %	57 %	77 %	7 %	19 %
	FIN_3	4 %	50 %	5 %	0 %	0 %
	FIN_4	3 %	0 %	5 %	0 %	0 %
3	FIN_5	3 %	0 %	3 %	1 %	24 %
5	FIN_6	25 %	33 %	33 %	9 %	44 %
	SWE_1	96 %	100 %	100 %	78 %	100 %
	SWE_2	40 %	88 %	74 %	5 %	50 %
	SWE_3	27 %	0 %	34 %	2 %	0 %
	SWE_4	2 %	50 %	2 %	0 %	0 %
	FIN_1	74 %	67 %	90 %	48 %	79 %
	FIN_2	70 %	91 %	96 %	20 %	52 %
	FIN_3	3 %		5 %	0 %	0 %
	FIN_4	0 %	0 %	0 %	0 %	0 %
4	FIN_5	0 %	0 %	0 %	0 %	0%
	FIN_6	3%		4 %	0 %	10 %
	SWE_1	78 %		80 %	60 %	100 %
	SWE_2	34 %	100 %	63 %	1%	75 %
	SWE_3	8%	50 %	9%	3 %	0%
	SWE_4	2 %	0 %	3 %	0 %	0 %
	FIN_1	26 %	64 %	37 %	8%	12 %
	FIN_2	24 %	50 %	31 %	4 %	19 %
_	FIN_6	0%	0%	0%	0%	0%
5	SWE_1	43 %	0%	46 %	31 %	50 %
	SWE_2	23 %	50 %	38 %	0%	1/%
	SWE_3	2%		3%	<u> </u>	
	SWE_4	0 %		0 %		

4.2 ASSISTANCE DURATION

The average assistance durations for different EEDI-categories are presented in Table 4-4 to Table 4-6. Assistance times are based on icebreakers notifications on how long they have been assisting the vessels. The times for winter 2015-2016 are clearly longer than for the other two winters. The reason for this is unknown.

<u>Table 4-4: Average assistance durations [hours] during winter 2017-2018. Only the period and port group combinations in which there has been assistance are shown.</u>

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		1.7	1.4	1.8
1	SWE_1		0.4		
	SWE_2		0.9		
	FIN_1	3.2	2.5	2.0	1.5
	FIN_2		3.0	2.7	
	FIN_3		0.7		
	FIN_5		1.3		
2	FIN_6		3.1		
	SWE_1	2.0	3.7	2.7	3.2
	SWE_2		3.0		1.6
	SWE_3		1.2		
	SWE_4		0.8		
	FIN_1	3.6	5.9	2.7	4.8
	FIN_2	2.7	5.2	3.9	1.1
	FIN_3	2.7	2.8		
	FIN_4		2.7		
2	FIN_5		1.6	1.3	1.9
5	FIN_6	1.6	2.1	1.4	5.4
	SWE_1	3.4	7.4	2.8	6.7
	SWE_2	5.3	5.7	0.9	3.1
	SWE_3		2.1	0.6	
	SWE_4	1.7	1.4		
	FIN_1	11.0	8.3	3.3	4.3
	FIN_2	4.9	5.3	4.0	3.2
	FIN_3		2.3		
	FIN_5		0.7		
4	FIN_6		2.3		1.7
	SWE_1		6.7	3.2	4.6
	SWE_2	9.5	6.5	0.6	4.2
	SWE_3	0.8	3.7	1.6	
	SWE_4		1.1		
	FIN_1	3.3	2.7	2.4	2.5
	FIN_2	1.9	2.9	1.7	2.1
5	SWE_1		4.0	2.1	3.4
	SWE_2	3.2	2.9		1.8
	SWE_3		1.6		

<u>Table 4-5: Average assistance durations [hours] during winter 2016-2017. Only the period and port group combinations in which there has been assistance are shown.</u>

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1	1.4	1.7	1.4	1.8
1	FIN_2		3.8		
	SWE_2		1.4		
	FIN_1		3.1	1.8	2.5
2	FIN_2		1.6	0.4	
2	SWE_1		1.5	0.5	
	SWE_2		3.4		
	FIN_1		5.0	2.4	3.9
	FIN_2	1.5	2.8	2.2	1.8
3	FIN_3		3.9		
	SWE_1		0.9		
	SWE_2		3.1		
	FIN_1		5.2	3.7	4.8
4	FIN_2	0.5	3.0	2.8	0.5
	FIN_3		6.9		
E	FIN_1		2.9	2.4	2.7
5	FIN_2		1.5		0.6

Table 4-6: Average assistance durations [hours] during winter 2015-2016. Only the period and port group combinations in which there has been assistance are shown.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		4.9		
1	FIN_2		2.0	3.7	
	SWE_1		1.2	0.5	
	SWE_2		2.9		1.6
	FIN_1		9.1	3.5	7.5
	FIN_2		3.3	1.8	
	FIN_3		3.4		
	FIN_4		8.2		
2	FIN_6		5.3	3.4	5.0
	SWE_1		3.7	2.7	3.0
	SWE_2	3.4	3.8	1.1	
	SWE_3		4.0		
	SWE_4		5.4		
	FIN_1		12.7	7.3	7.5
	FIN_2		7.8	2.0	5.1
	FIN_3		3.3		
2	FIN_5		3.0	5.0	
3	SWE_1		8.6	9.8	10.2
	SWE_2		8.2	2.7	4.1
	SWE_3		7.2		4.8
	SWE_4		5.2		
	FIN_1		8.7	6.1	6.1
	FIN_2		4.6	2.5	2.2
4	SWE_1		4.6	6.7	9.4
	SWE_2		9.1		
	SWE_3			0.8	
	FIN_1		5.5	7.6	6.7
5	FIN_2		4.0		
5	SWE_1		3.5		
	SWE_2		20.1		

4.3 ASSISTANCE DISTANCE

The average assistance distances are presented in Table 4-7 to Table 4-9. The assisted distance is based on the position information of the merchant vessels. In some cases, there has been gaps in the position information which distorts the distance data. Clearly erroneous distances (based on unrealistic assistance speeds) are excluded from the data. Due to gaps in the position data, the distance data shall be regarded less reliable than the duration data and should be considered indicative. The distances for winter 2015-2016 are clearly longer than for the other two winters. The reason for this is unknown.

<u>Table 4-7: Average assistance distance [nautical miles] during winter 2017-2018.</u> <u>Only the period and port group combinations in which there has been assistance are shown.</u>

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		14.4	22.5	20.8
1	SWE_1		3.0		
	SWE_2		8.5		
	FIN_1	27.7	22.0	19.0	13.6
	FIN_2		29.0	21.4	
	FIN_3		5.1		
	FIN_5		13.1		
2	FIN_6		25.0		
	SWE_1	15.3	34.0	28.3	29.6
	SWE_2		27.0		12.2
	SWE_3		9.4		
	SWE_4		7.8		
	FIN_1	33.3	53.9	30.9	57.6
	FIN_2	34.2	45.2	32.8	10.6
	FIN_3	33.4	25.7		
	FIN_4		23.4		
2	FIN_5		13.2	12.7	16.2
5	FIN_6	15.3	17.2	17.2	18.7
	SWE_1	63.6	66.3	30.6	63.6
	SWE_2	51.4	53.4	11.2	34.6
	SWE_3		20.3	4.5	
	SWE_4		18.6		
	FIN_1	124.5	76.5	34.7	48.6
	FIN_2	47.1	47.0	35.1	31.1
	FIN_3		22.7		
	FIN_5		5.8		
4	FIN_6		19.2		13.8
	SWE_1		65.7	41.8	46.5
	SWE_2	83.1	62.4	6.2	52.0
	SWE_3	9.7	36.0	20.0	
	SWE_4		11.7		
	FIN_1	38.3	28.7	27.9	30.0
	FIN_2	20.5	31.9	20.8	21.9
5	SWE_1		40.8	27.9	36.6
	SWE_2	40.2	30.6		20.4
	SWE_3		10.7		

<u>Table 4-8: Average assistance distance [nautical miles] during winter 2016-2017.</u> <u>Only the period and port group combinations in which there has been assistance are shown.</u>

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1	7.5	14.7	15.0	16.3
1	FIN_2				
	SWE_2		11.0		
	FIN_1		22.3	16.7	20.7
2	FIN_2		14.7	4.8	
2	SWE_1		22.1		
	SWE_2		31.8		
	FIN_1		41.1	22.9	33.3
	FIN_2	12.5	26.2	23.5	20.1
3	FIN_3		38.0		
	SWE_1		10.9		
	SWE_2		33.7		
	FIN_1		41.6	29.9	45.2
4	FIN_2		28.1	22.3	
	FIN_3		62.9		
E	FIN_1		25.6	26.9	28.7
5	FIN_2		14.4		

<u>Table 4-9: Average assistance distance [nautical miles] during winter 2015-2016.</u> <u>Only the period and port group combinations in which there has been assistance are shown.</u>

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		42.8		
	FIN_2		15.1		
L	SWE_1		7.0		
	SWE_2		14.1		9.1
	FIN_1		81.4	34.2	65.6
	FIN_2		32.6	13.4	
	FIN_3		43.6		
	FIN_4		65.6		
2	FIN_6		48.8	42.1	44.1
	SWE_1		32.8	22.8	37.7
	SWE_2	21.1	29.4	13.2	
	SWE_3		43.0		
	SWE_4		51.1		
	FIN_1		106.3	58.2	89.2
	FIN_2		59.3	18.5	46.9
	FIN_3		31.0		
2	FIN_5		28.0	67.0	
5	SWE_1		75.3	121.0	88.5
	SWE_2		54.4	26.3	55.3
	SWE_3		44.3		50.3
	SWE_4		64.5		
	FIN_1		78.8	65.7	56.5
	FIN_2		47.4	17.4	16.3
4	SWE_1		55.4	73.0	159.7
	SWE_2		69.3		
	SWE_3			10.6	
	FIN_1		55.8	87.9	84.5
5	FIN_2		39.7		
5	SWE_1		41.8		
	SWE_2				

4.4 ASSISTANCE SPEED

The average assistance speeds are presented in Table 4-10 to Table 4-12. The average assistance speed is calculated based on the assistance distance and duration. The assistance speed information shall be considered indicative due to limitations of the distance data. The data has been filtered by excluding average assistance speeds above 15 knots and below 5 knots.

4.6.2019

Table 4-10: Average assistance speeds [knots] during winter 2017-2018. Only the period and port group combinations in which there has been assistance are shown.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		8.2	13.1	11.4
1	SWE_1		8.2		
	SWE_2		9.4		
	FIN_1	8.6	9.0	10.0	11.0
	FIN_2		9.5	8.7	
	FIN_3		7.3		
	FIN_5		9.8		
2	FIN_6		8.1		
	SWE_1	7.6	9.5	10.7	8.8
	SWE_2		9.1		8.1
	SWE_3		8.6		
	SWE_4		10.4		
	FIN_1	8.6	9.0	10.7	9.4
	FIN_2	9.7	8.9	7.8	9.5
	FIN_3	12.6	8.5		
	FIN_4		9.2		
3	FIN_5		8.6	9.6	7.9
3	FIN_6	9.6	8.1	9.1	6.8
	SWE_1	10.6	9.1	11.3	9.9
	SWE_2	9.9	9.6	12.6	10.0
	SWE_3		9.4	7.8	
	SWE_4		8.9		
	FIN_1	11.4	9.3	10.9	10.8
	FIN_2	9.7	8.9	8.9	8.8
	FIN_3		10.1		
	FIN_5		8.1		
4	FIN_6		8.7		8.2
	SWE_1		9.9	10.8	10.2
	SWE_2	8.5	9.6	10.3	8.1
	SWE_3	11.7	9.9	12.2	
	SWE_4		9.1		
	FIN_1	10.5	10.1	11.1	11.7
	FIN_2	10.5	11.0	12.2	10.7
5	SWE_1		10.4	13.0	10.8
	SWE_2	12.5	10.4		11.3
	SWE_3		6.8		

Aker Arctic Technology Inc

K381 / A / Approved

shown.

Table 4-11: Average assistance speeds [knots] during winter 2016-2017. Only the period and port group combinations in which there has been assistance are

PERIOD PORT_Group Phase_0_1 EEDI_compliant Non_compliant NA FIN_1 8.3 10.4 8.5 5.6 1 FIN 2 11111 SWE_2 8.0 FIN_1 8.0 9.6 7.9 9.1 13.0 FIN 2 -----2 SWE_1 8.1 8.8 SWE 2 8.0 FIN 1 9.1 8.9 FIN_2 9.2 9.6 11.0 8.3 3 FIN_3 9.5 12.4 SWE 1 8.2 SWE_2 FIN 1 8.0 9.0 8.5 4 FIN_2 9.1 8.6 FIN_3 9.1 9.2 FIN 1 11.6 10.0 5 FIN_2 9.2

<u>Table 4-12: Average assistance speeds [knots] during winter 2015-2016. Only the period and port group combinations in which there has been assistance are shown.</u>

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		8.2		
1	FIN_2		7.0		
1	SWE_1		9.0		
	SWE_2		6.5		5.7
	FIN_1		9.0	10.2	9.0
	FIN_2		8.9	7.5	
	FIN_3		11.1		
	FIN_4		8.0		
2	FIN_6		9.3	9.5	8.6
	SWE_1		9.2	9.0	10.3
	SWE_2	5.6	8.3	8.8	
	SWE_3		6.8		
	SWE_4		8.3		
	FIN_1		8.9	9.9	10.0
	FIN_2		8.6	9.3	8.6
	FIN_3		8.8		
2	FIN_5		9.3	13.3	
5	SWE_1		9.7	9.9	10.4
	SWE_2		8.1	9.6	13.5
	SWE_3		9.2		10.5
	SWE_4		10.2		
	FIN_1		9.0	10.8	9.1
	FIN_2		9.3	7.0	7.0
4	SWE_1		10.3	8.1	12.1
	SWE_2		8.8		
	SWE_3			13.3	
	FIN_1		10.1	11.1	12.2
5	FIN_2		9.3		
,	SWE_1		11.2		
	SWE_2				

4.5 NEED FOR TOWING

The need for towing is presented as a percentage on how many voyages the merchant vessel has been towed for each vessel group. The need for towing is presented in Table 4-13 to Table 4-15. It should be noted that in some cases there has been only couple vessels from which the relative proportion is calculated. More detail statistics about how many voyages have been done totally and how much icebreaker towing was needed is presented in Appendix 4.

Table 4-13: Summary on the need for towing during winter 2017-2018. Only the period and port group combinations in which there has been voyages are shown.

PERIOD	PORT_Group	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1	0%	0 %	1%	0 %	0%
	FIN_2	0%		0 %	0 %	
1	SWE_1	0 %	0 %	0 %	0 %	0 %
	SWE_2	0 %	0 %	0 %	0 %	0 %
	SWE_3	0 %		0 %	0 %	
	FIN_1	21%	0 %	33 %	10 %	0%
	FIN_2	0%	0 %	0 %	0 %	0%
	FIN_3	0%		0 %	0 %	0%
	FIN_4	0 %		0 %	0 %	0%
2	FIN_5	0 %	0 %	0 %	0 %	0%
2	FIN_6	0 %	0 %	0 %	0 %	0%
	SWE_1	2 %	0 %	3 %	0 %	0 %
	SWE_2	2 %		5 %	0 %	0 %
	SWE_3	0 %	0 %	0 %	0 %	0 %
	SWE_4	0 %		0 %	0 %	0 %
	FIN_1	23 %	56 %	35 %	0 %	12 %
	FIN_2	5 %	0 %	7 %	0 %	0%
	FIN_3	0 %	0 %	0 %	0 %	0%
	FIN_4	0 %	0 %	0 %	0 %	0%
3	FIN_5	0 %	0 %	0 %	0 %	3 %
5	FIN_6	1%	0 %	0 %	0 %	13 %
	SWE_1	13 %	50 %	17 %	0 %	0 %
	SWE_2	4 %	13 %	7 %	0 %	0 %
	SWE_3	0 %	0 %	0 %	0 %	0 %
	SWE_4	0 %	50 %	0 %	0 %	0 %
	FIN_1	18 %	0 %	32 %	0 %	0 %
	FIN_2	10 %	9 %	16 %	0 %	5 %
	FIN_3	0 %		0 %	0 %	0%
	FIN_4	0 %	0 %	0 %	0 %	0%
4	FIN_5	0 %	0 %	0 %	0 %	0 %
-	FIN_6	0 %		0 %	0 %	0 %
	SWE_1	3 %		4 %	0 %	0 %
	SWE_2	1%	0 %	1%	0 %	25 %
	SWE_3	0 %	0 %	0 %	0 %	0 %
	SWE_4	0 %	0 %	0 %	0 %	0 %
	FIN_1	0 %	0 %	1%	0 %	0%
	FIN_2	0%	0 %	0 %	0 %	0%
_	FIN_6	0%	0 %	0 %	0 %	0%
5	SWE_1	0 %	0 %	0 %	0 %	0 %
	SWE_2	0 %	0 %	0 %	0 %	0 %
	SWE_3	0 %		0 %	0 %	
	SWE_4	0 %		0 %		

ΛΙ		٨	1.12	
A	ker	Ar	<u>'Ct</u> l	\mathbf{C}
		/ \1	U	

Table 4-14: Summary	on the need for towing	g during winter 2	2016-2017. Only the
period and port group	combinations in which	there has been	voyages are shown.

PERIOD	PORT_Group	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1	5 %	50 %	9 %	0 %	0 %
1	FIN_2	1%		2 %	0 %	0 %
1	SWE_1	0 %	0 %	0 %	0 %	0 %
	SWE_2	0 %		0 %	0 %	0 %
	FIN_1	10 %		23 %	0 %	2 %
2	FIN_2	0 %	0 %	0 %	0 %	0 %
2	SWE_1	0 %		0 %	0 %	0 %
	SWE_2	1%		1 %	0 %	0 %
	FIN_1	10 %		20 %	1%	2 %
	FIN_2	1%	0 %	1 %	0 %	0 %
3	FIN_3	0 %		0 %	0 %	
	SWE_1	0 %		0 %	0 %	0 %
	SWE_2	0 %		0 %	0 %	0 %
	FIN_1	26 %		50 %	0 %	7 %
4	FIN_2	3 %	0 %	5 %	0 %	0 %
	FIN_3	0 %		0 %	0 %	
E	FIN_1	1%	0 %	2 %	0 %	0 %
5	FIN_2	1%	0 %	2 %	0 %	0 %

Δ	ker	Ar	cti	C
	NGI		υu	U

Table 4-15: Summary	on the need for towing	g during winter 2	015-2016. Only the
period and port group	combinations in which	there has been	voyages are shown.

PERIOD	PORT_Group	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1	0%		0 %	0 %	0%
1	FIN_2	0%		0 %	0 %	0%
	SWE_1	0 %		0 %	0 %	0 %
	SWE_2	0 %		0 %	0 %	0 %
	SWE_3	0 %		0 %	0 %	0 %
	SWE_4	0 %		0 %	0 %	
	FIN_1	9%		12 %	0 %	15 %
	FIN_2	1%		2 %	0 %	0 %
	FIN_3	0%		0 %	0 %	0 %
	FIN_4	0%		0 %	0 %	0 %
2	FIN_5	0%	0 %	0 %	0 %	0 %
2	FIN_6	0 %	0 %	0 %	0 %	0 %
	SWE_1	1%		1 %	0 %	0 %
	SWE_2	0 %	0 %	0 %	0 %	0 %
	SWE_3	0 %		0 %	0 %	0 %
	SWE_4	0 %		0 %	0 %	0 %
	FIN_1	13 %		21 %	0 %	0 %
	FIN_2	1%		2 %	0 %	0 %
	FIN_3	1%	0 %	1 %	0 %	0 %
	FIN_4	0 %		0 %	0 %	0 %
3	FIN_5	0 %	0 %	0 %	0 %	0 %
Ū	FIN_6	0 %	0 %	0 %	0 %	0 %
	SWE_1	2 %		2 %	0 %	7 %
	SWE_2	3 %		7 %	0 %	0 %
	SWE_3	0 %		0 %	0 %	0 %
	SWE_4	0 %		0 %	0 %	0 %
	FIN_1	10 %		16 %	0 %	0 %
	FIN_2	1%		1 %	0 %	0 %
	FIN_3	0%	0 %	0 %	0 %	0 %
	FIN_4	0%		0 %	0 %	0%
4	FIN_5	0%	0 %	0 %	0%	0%
	FIN_6	0%		0%	0%	0%
	SWE_1	0%		0%	0 %	0%
	SWE_2	4%		7%	0%	0%
	SWE_3	0%		0%	<u> </u>	0%
	SWE_4	0%		0%		0%
	FIN_1	0%		1%	0%	0%
	FIN_2	0%		0 %	0%	0%
5	SVVE_1	0%		0 %	U %	υ%
		0%		0 %	U %	
	SVVE_3	0%		U %		
	SWE_4	0%		0%		

4.6 TOWING DURATION

The average towing durations for different EEDI-categories are presented in Table 4-16 to Table 4-18. Towing times are based on icebreakers notifications how long they have been towing the vessels. It should be noted that in some cases the average duration has been calculated only from couple events. The durations for winter 2015-2016 are clearly longer than for the other two winters. The reason for this is unknown.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
1	FIN_1		0.4		
	FIN_1		2.1	1.1	
2	FIN_2		2.8		
2	SWE_1		3.1		
	SWE_2		1.3		
	FIN_1	1.4	2.5		1.1
	FIN_2		2.8		
	FIN_5				1.2
3	FIN_6				2.4
	SWE_1	1.7	2.4		
	SWE_2	5.7	2.7		
	SWE_4	0.7	0.8		
	FIN_1		2.6		
	FIN_2	1.0	1.9		1.9
Δ	SWE_1		2.6		
4	SWE_2		1.1		1.2
	SWE_3		1.3		
	SWE_4		1.0		
5	FIN 1		2.3		

<u>Table 4-16: Average towing durations [hours] during winter 2017-2018. Only the</u> period and port group combinations in which there has been towing are shown.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
1	FIN_1	0.3	0.9		
1	FIN_2		1.5		
	FIN_1		2.0		2.3
2	FIN_2		0.5		
	SWE_2		1.5		
2	FIN_1		3.0	0.5	1.1
3	FIN_2		1.8		
Λ	FIN_1		4.0		1.3
4	FIN_2		2.3		
E	FIN_1		2.3		
5	FIN_2		0.5		

Table 4-17: Average towing durations [hours] during winter 2016-2017. Only the period and port group combinations in which there has been towing are shown.

Table 4-18: Average towing durations [hours] during winter 2015-2016. Only the period and port group combinations in which there has been towing are shown.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		8.0		4.6
2	FIN_2		8.2		
	SWE_1		7.8		
	FIN_1		8.2		
	FIN_2		12.3		
3	FIN_3		6.4		
	SWE_1		8.0		0.0
	SWE_2		2.9		
	FIN_1		5.8		
4	FIN_2		3.8		
	SWE_2		4.8		
5	FIN_1		5.3		

4.7 TOWING DISTANCE

The average towing distances are presented in Table 4-19 to Table 4-21. The towing distance is based on the position information of the merchant vessels. In some cases, there have been gaps in the position information which distorts the distance data. Due to gaps in the position data, the distance data shall be regarded as less reliable than the duration data and should be considered indicative. It should be noted that in some cases the average distance has been calculated only from couple events. The distances for winter 2015-2016 are clearly longer than for the other two winters. The reason for this is unknown.

Table 4-19: Average towing	distance	[nautical n	niles] duri	ng winter 20	<u>17-2018.</u>
Only the period and port gro	oup combi	nations in	which the	ere has been	towing are
shown.	-				-

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
1	FIN_1		0.3		
	FIN_1		14.2	4.1	
2	FIN_2		25.3		
2	SWE_1		5.9		
	SWE_2		6.7		
	FIN_1	12.5	19.6		7.4
	FIN_2		22.3		
	FIN_5				5.2
3	FIN_6				17.8
	SWE_1	14.1	13.7		
	SWE_2	40.5	20.6		
	SWE_4	0.7	2.0		
	FIN_1		20.6		
	FIN_2	7.7	10.6		14.6
л	SWE_1		19.5		
4	SWE_2		8.9		2.7
	SWE_3		6.8		
	SWE_4		2.0		
5	FIN_1		16.9		

Table 4-20: Average towing distance [nautical miles] during winter 2016-2017. Only the period and port group combinations in which there has been assistance are shown.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
1	FIN_1	0.6	3.4		
1	FIN_2		7.2		
	FIN_1		10.9		13.6
2	FIN_2		0.5		
	SWE_2		12.6		
2	FIN_1		14.0	1.3	3.2
5	FIN_2		1.2		
л	FIN_1		27.1		6.9
4	FIN_2		15.9		
F	FIN_1		11.6		
5	FIN_2		3.2		

Table 4-21: Average towing distance [nautical miles] during winter 2015-2016. Only the period and port group combinations in which there has been assistance are shown.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		60.7		41.2
2	FIN_2		73.9		
	SWE_1		86.6		
	FIN_1		62.6		
	FIN_2		105.2		
3	FIN_3		55.7		
	SWE_1		57.5		0.4
	SWE_2		18.1		
	FIN_1		46.6		
4	FIN_2		31.9		
	SWE_2		34.7		
5	FIN_1		40.7		

4.8 TOWING SPEED

The average towing speeds are presented in Table 4-22 to Table 4-24. The average towing speed is calculated based on the assistance distance and duration. The towing speed information shall be considered indicative due to limitations of the distance data.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
1	FIN_1		0.7		
	FIN_1		6.2	4.1	
2	FIN_2		8.9		
2	SWE_1		2.1		
	SWE_2		5.2		
	FIN_1	8.2	7.7		6.1
3	FIN_2		7.6		
	FIN_5				4.4
	FIN_6				7.6
	SWE_1	8.4	5.4		
	SWE_2	7.5	8.0		
	SWE_4	1.0	2.4		
	FIN_1		7.7		
4	FIN_2	7.7	4.7		7.6
	SWE_1		7.5		
	SWE_2		8.2		2.3
	SWE_3		5.1		
	SWE_4		2.0		
5	FIN_1		7.3		

Table 4-22: Average towing speeds [knots] during winter 2017-2018.

Table 4-23: Average towing speeds [knots] during winter 2016-2017.

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
1	FIN_1	1.8	3.7		
1	FIN_2		5.0		
	FIN_1		4.9		6.1
2	FIN_2		1.0		
	SWE_2		8.4		
2	FIN_1		5.1	2.6	3.6
5	FIN_2		1.4		
4	FIN_1		6.9		4.5
4	FIN_2		5.9		
5	FIN_1		7.2		
	FIN_2		6.6		

PERIOD	PORT_Group	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN_1		6.4		8.5
2	FIN_2		7.0		
	SWE_1		11.1		
	FIN_1		6.8		
	FIN_2		8.7		
3	FIN_3		8.7		
	SWE_1		7.2		13.3
	SWE_2		4.1		
	FIN_1		7.7		
4	FIN_2		7.7		
	SWE_2		5.7		
5	FIN_1		7.8		

Table 4-24 [·] Average	ae towing	a speeds	[knots]	during	a winter 2015-2016
	90 10000	1000000	liniorol	aunig	

4.9 SUMMARY ON ASSISTANCE AND TOWING

Summaries of the icebreaker assistance and towing related quantities are presented in Table 4-25 and Table 4-26. The tables present the average values which have been calculated for the whole winter in all port groups. The averages calculated for the whole winter and whole area indicate that the new vessels built to EEDI Phase 0 and 1 regulations and old EEDI compliant vessels need more icebreaker assistance and towing compared to non-compliant vessels. In addition, the assisted and towed times and distance are longer, and speeds are lower compared to non-compliant vessels.

However, it should be noted that calculating the averages for the whole winter and whole area is quite big simplification as different ice conditions are mixed. A more detailed picture can be obtained by investigating the tables of the previous chapters.

	Year	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
Nood for	2017-2018	21.4 %	36.7 %	27.9 %	9.8 %	23.3 %
	2016-2017	20.6 %	20.7 %	31.0 %	11.9 %	6.8 %
assistance	2015-2016	14.0 %	6.3 %	19.3 %	5.1 %	9.4 %
	2017-2018		3.8	3.1	2.2	3.1
Time [h]	2016-2017		1.1	3.0	2.0	2.3
	2015-2016		3.4	6.0	4.0	5.6
Distance [NM]	2017-2018		42.5	28.5	23.4	30.4
	2016-2017		10.0	27.4	20.2	27.4
	2015-2016		21.1	48.5	44.8	61.8
	2017-2018		10.1	9.1	10.6	9.7
Speed [kn]	2016-2017		7.0	8.9	10.1	9.1
	2015-2016		5.6	8.9	9.8	9.8

|--|

Table 4-26: Summary for icebreaker towing.

	Year	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	2017-2018	2.5 %	5.7 %	3.9 %	0.2 %	1.5 %
Need for towing	2016-2017	3.3 %	7.1 %	6.4 %	0.1 %	0.6 %
	2015-2016	1.1 %	0.0 %	1.7 %	0.0 %	0.6 %
	2017-2018		2.1	2.0	1.1	1.6
Time [h]	2016-2017		0.3	1.8	0.5	1.6
	2015-2016		-	6.8	-	2.3
Distance [NM]	2017-2018		15.1	12.7	4.1	9.5
	2016-2017		0.6	9.8	1.3	7.9
	2015-2016		-	56.2	-	20.8
	2017-2018		6.6	5.7	4.1	5.6
Speed [kn]	2016-2017		1.8	5.1	2.6	4.8
	2015-2016		-	7.4	-	10.9

4.10 EFFECT OF POWER-DEADWEIGHT RATIO

The effect of the power-displacement ratio is investigated by focusing on port group FIN_1 (Oulu, Kemi, Tornio) from mid-February to mid-April on winter 2018 (periods 3 and 4). The ice conditions are considered to be most difficult on this location-period combination from the whole data set.

The power-deadweight ratio has been compared to the assistance speed, duration and distance in Figure 4-1 to Figure 4-3. There is quite lot of scatter in the figures, but it seems that there are slight trends that the assistance duration and distance increase as the power-deadweight ratio decreases and the assistance speed decreases as the power-deadweight ratio decreases.

In Figure 4-4 and Figure 4-5 is presented the power-deadweight ratio distribution of assisted and non-assisted vessels. The distributions are normalized based on probability in order to compare different sample sizes. It is clearly visible that the vessels which have needed icebreaker assistance have lower power-deadweight ratio compared to vessels which have not needed assistance.

In Figure 4-6 and Figure 4-7 is presented the power-deadweight ratio of towed and non-towed vessels. Similar trends as for assistance can be seen although it is not as clear. Very few vessels with power-deadweight ratio above 0.8 have been towed and no vessels with 1.0 power-deadweight have been towed in the investigated sample.

Figure 4-1: Power-deadweight ratio versus assistance speed.

Figure 4-2: Power-deadweight ratio versus assistance duration.

Figure 4-3: Power-deadweight ratio versus assistance miles.

Figure 4-4: Power-deadweight distribution of the assisted and non-assisted vessels, period 3. The dark brown color refers to a case where the two distributions overlap.

Figure 4-5: Power-deadweight distribution of the assisted and non-assisted vessels, period 4. The dark brown color refers to a case where the two distributions overlap.

Figure 4-6: Power-deadweight distribution of the towed and non-towed vessels, period 3. The dark brown color refers to a case where the two distributions overlap.

P/DWT

Figure 4-7: Power-deadweight distribution of the towed and non-towed vessels, period 4. The dark brown color refers to a case where the two distributions overlap.

Aker Arctic

5 CONCLUSIONS

The ice-going performance of different EEDI-category vessels has been investigated in this report.

Only few (23) different vessels which are built according to the EEDI-regulations have visited the ports of the northern Baltic Sea during the past three winters. In addition, most of these are sister ships which reduces the amount of different EEDI-compliant designs. However, despite of the small data set, it is possible to find some trends on how the EEDI-compliant vessel are performing when compared to non-compliant vessels.

It is interesting to observe that majority of the old vessels would fulfil their required EEDI value. This most likely results from the small vessel size of the typical vessels present at the northern Baltic Sea. Even though older vessel would fulfil their required EEDI-value, it seems that the new vessels which are built according to the EEDI regulations have a smaller power-deadweight ratio when compared to older vessels. It is possible that the open-water speeds of the future fleets are reducing which will reduce the installed powers more than the EEDI regulations alone would require. This can also be related to improved hydrodynamic design of the new vessels.

Based on this data set, there seems to be a clear correlation between the powerdeadweight ratio of the merchant vessel and the need for icebreaker assistance and towing. The need for icebreaker assistance increases as the powerdeadweight ratio decreases. As the power-deadweight ratio is smaller for new ships, it is expected that more icebreaker assistance and towing is needed in the future. For winters 2017-2018 and 2016-2017, approximately 30% of the EEDIcompliant vessels have needed icebreaker assistance while only about 10% of the non-compliant vessels needed assistance. For winter 2015-2016 ~20% of EEDIcompliant vessel needed icebreaker assistance while only ~5% of the noncompliant vessel needed assistance. However, these are very rough estimate based on the averages of the whole winter.

In addition, there seems to be a trend that for the EEDI-compliant vessels the assistance and towing times and distances are longer, and speeds are lower compared to non-compliant vessels.

All the above factors could result that more icebreaker capacity is needed in the future. However, as there are only very few actual EEDI vessels in service, it is not possible to draw very definite conclusions. It is recommended that similar research is done also for following winters in order to have more data and information about the performance of the new vessels which have been built according to the EEDI regulations.

APPENDIX 1: LIST OF PORTS

FINLAND	
Port	Group
'KEMI'	FIN_1
'OULU'	FIN_1
'TORNIO'	FIN_1
'KALAJOKI'	FIN_2
'KOKKOLA'	FIN_2
'RAAHE'	FIN_2
'VAASA'	FIN_2
PIETARSAARI'	FIN_2
'KASKINEN'	FIN_3
'KRISTIINANKAUPUNKI'	FIN_3
'PORI'	FIN_3
'RAUMA'	FIN_3
'FÖRBY'	FIN_4
'NAANTALI'	FIN_4
'TURKU'	FIN_4
'UUSIKAUPUNKI'	FIN_4
'HANKO'	FIN_5
HELSINKI'	FIN_5
'INKOO'	FIN_5
'KANTVIK'	FIN_5
'KOVERHAR'	FIN_5
'LOVIISA'	FIN_5
'SKÖLDVIK'	FIN_5
'KOTKA'	FIN_6
'HAMINA'	FIN_6

SWEDEN	
Port	Group
'HARAHOLMEN'	SWE_1
'LULEÅ'	SWE_1
'HOLMSUND'	SWE_2
'KARLSBORG'	SWE_2
SKELLEFTEHAMN'	SWE_2
'HUDIKSVALL'	SWE_3
'HUSUM'	SWE_3
'HÄRNÖSAND'	SWE_3
'IGGESUND'	SWE_3
'RUNDVIK'	SWE_3
'SUNDSVALL'	SWE_3
'SÖRÅKER'	SWE_3
ÅNGERMANÄLVEN'	SWE_3
ÖRNSKÖLDSVIK'	SWE_3
'GRISSLEHAMN'	SWE_4
'GÄVLE'	SWE_4
'HALLSTAVIK'	SWE_4
'HARGSHAMN'	SWE_4
KAPELLSKÄR'	SWE_4
NORRSUNDET'	SWE_4
'ORRSKÄR'	SWE_4
SKUTSKÄR'	SWE_4
'STOCKHOLM'	SWE_4
'SÖDERHAMN'	SWE_4

APPENDIX 2: ICE CHARTS

10011.17000100

Aker Arctic

Aker Arctic

Aker Arctic Technology Inc K381 / A / Approved

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

Aker Arctic

Aker Arctic

Aker Arctic

· IL, Jaaparein, 1551 1750-0105

4.6.2019

Aker Arctic

Aker Arctic Technology Inc K381 / A / Approved

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

4.6.2019

Aker Arctic

APPENDIX 3: SUMMARY OF THE ASSISTANCE EVENTS

	IC	EBRE	AKER A	SSISTANCE:	WINTER 2015-2016	5	
PERIOD	PORT_Group	LED	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN 1	No	92	0	52	34	6
		Yes	11	0	11	0	0
	FIN_2	No	34	0	18	12	4
		Yes	22	0	14	1	0
	SWE_1	Yes	4	0	3	3	0
1		No	21	0	10	8	3
	SWE_2	Yes	6	0	5	0	1
	SIME 2	No	20	0	14	4	2
	SVVE_5	Yes	0	0	0	0	0
	SWF 4	No	2	0	1	1	0
		Yes	0	0	0	0	0
	FIN_1	No	103	0	47	47	9
		Yes	211	0	111	13	11
	FIN_2	Yes	58	0	54	4	0
	EIN: 2	No	237	0	166	50	21
	FIN_3	Yes	4	0	4	0	0
	FIN A	No	529	0	335	182	12
		Yes	1	0	1	0	0
2	FIN_5	No	735	7	340	332	56
	-	Yes	244	0	182	0	0
	FIN_6	Yes	16	0	6	154	6
		No	81	0	55	16	10
	SWE_1	Yes	40	0	34	2	4
	CIA/E 2	No	128	2	28	84	14
	SWE_2	Yes	45	2	41	2	0
	SWF 3	No	188	0	128	45	15
	5112_5	Yes	3	0	3	0	0
	SWE_4	No	118	0	99	15	4
	-	Yes	3	0	3	0	0
	FIN_1	Yes	152	0	128	19	15
	-	No	220	0	134	74	12
	FIN_2	Yes	52	0	48	1	3
	EINI 2	No	255	2	174	52	27
	r'IN_3	Yes	6	0	6	0	0
	FIN 4	No	563	0	345	200	18
		Yes	0	0	0	0	0
	FIN_5	No	771	3	365	353	50
3		Yes	362	0	170	155	24
	FIN_6	Yes	0	4	0	135	0
	0.115	No	40	0	20	15	5
	SWE_1	Yes	57	0	42	6	9
	SIN/E 2	No	136	0	37	87	12
	JVVE_Z	Yes	36	0	34	1	1
	SWE 3	No	240	0	165	56	19
	*	Yes	6	0	5	0	1
	SWE_4	NO	122	0	102	14	6
		No	87	0	2	56	10
	FIN_1	Yes	167	0	136	20	11
	F	No	192	0	130	50	12
	FIN_2	Yes	79	0	75	1	3
	FIN 3	No	67	2	52	11	2
		Yes	0	0	0	0	0
	FIN_4	No	104	0	69	32	3
	-	Yes	0	0	0	0	0
	FIN_5	Yes	109	2	100	0	0
4		No	154	0	74	76	4
	FIN_6	Yes	0	0	0	0	0
		No	54	0	31	11	12
	SWE_1	Yes	38	0	32	4	2
	SWF 2	No	95	0	41	49	5
	···	Yes	18	0	18	0	0
	SWE_3	No	100	0	73	18	9
		Yes	1	0	0	1	0
	SWE_4	Yes	44	0	42	0	2
		No	166	0	101	52	13
	FIN_1	Yes	37	0	32	2	3
	F	No	46	0	38	6	2
	FIN_2	Yes	6	0	6	0	0
	SW/F 1	No	74	0	52	12	10
5	3VVC_1	Yes	13	0	13	0	0
5	SWE 2	No	16	0	15	1	0
		Yes	1	0	1	0	0
	SWE_3	NO	2	0	2	0	0
		No	1	0	1	0	0
	SWE_4	Yes	0	0	0	0	0

NA

	ICEBREAKER ASSISTANCE: WINTER 2016-2017									
PERIOD PORT_Group LED Total Phase_0_1 EEDI_compliant Non_complian										
	5101 4	No	191	0	67	61				

	EINI 1	No	191	0	67	61	63
	· · · · ·	Yes	151	2	103	36	10
	EINI 2	No	134	0	87	32	15
1	1111_2	Yes	2	0	2	0	0
1	S\//E 1	No	61	2	45	6	8
	5002_1	Yes	0	0	0	0	0
	S\//E 2	No	37	0	17	16	4
	5002_2	Yes	3	0	3	0	0
	FIN_1	No	183	0	17	51	115
		Yes	182	0	137	34	11
	FIN 2	No	288	5	182	79	22
2	FIN_2 SWE_1 SWE_2 FIN_1	Yes	27	0	26	1	0
2	SWF 1	No	91	0	61	24	6
	5002_1	Yes	3	0	2	1	0
	SWE_2 FIN_1	No	142	0	64	66	12
		Yes	13	0	13	0	0
	FIN_1	No	138	0	12	29	97
		Yes	177	0	123	42	12
	FIN 2	No	184	7	98	65	14
		Yes	111	4	102	4	1
3	FIN_3 SWE_1	No	33	0	31	2	0
		Yes	2	0	2	0	0
		No	22	0	15	5	2
		Yes	1	0	1	0	0
	SWE_2	No	38	0	14	22	2
		Yes	3	0	3	0	0
	FIN 1	No	114	0	14	42	58
	····•	Yes	208	0	143	50	15
4	FIN 2	No	235	11	127	86	11
-		Yes	91	1	85	4	1
	FIN 3	No	26	0	24	2	0
		Yes	1	0	1	0	0
	FIN 1	No	229	6	116	93	14
5	····•	Yes	59	0	46	8	5
-	FIN 2	No	126	6	97	11	12
	FIIN_2	Yes	30	0	28	0	2

Aker Arctic

PERIOD	PORT_Group	LED	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FINE 1	No	218	2	112	78	26
	FIN_1	Yes	24	0	18	5	1
	EINL 2	No	36	0	26	10	0
	FIIN_2	Yes	0	0	0	0	0
	SW/E 1	No	149	2	105	32	10
1	SVVE_1	Yes	2	0	2	0	0
	SW/E 2	No	77	2	51	20	4
	SVVE_2	Yes	1	0	1	0	0
	CIME 2	No	35	0	33	2	0
	SVVE_3	Yes	0	0	0	0	0
	FINI 1	No	81	0	18	50	13
	FIN_1	Yes	156	3	110	33	10
		No	281	4	181	72	24
	FIN_2	Yes	22	0	20	2	0
		No	80	0	67	9	4
	FIIN_5	Yes	1	0	1	0	0
		No	22	0	12	6	4
	FIN_4	Yes	0	0	0	0	0
		No	253	4	196	43	10
	FIN_3	Yes	1	0	1	0	0
-		No	278	1	170	83	24
	FIN_0	Yes	5	0	5	0	0
	SW/E 1	No	35	0	15	18	2
	JVVL_1	Yes	62	2	50	4	6
	SW/F 2	No	131	0	36	88	7
	JVVL_2	Yes	33	0	30	0	3
	SW/F 3	No	215	1	170	38	6
	JWL_3	Yes	7	0	7	0	0
	SW/E 4	No	75	0	64	9	2
	JVVL_4	Yes	1	0	1	0	0
	EIN 1	No	46	1	11	30	4
	LUN ^T	Yes	185	8	116	40	21
	FIN 2	No	126	3	38	68	17
	FIIN_2	Yes	137	4	124	5	4
	EINI 2	No	267	1	208	46	12
	FIIN_S	Yes	12	1	11	0	0
		No	345	4	188	130	23
	FIIN_4	Yes	10	0	10	0	0
		No	1408	4	1083	296	25
	FIN_3	Yes	40	0	29	3	8
3		No	275	2	149	115	9
	FIN_0	Yes	93	1	73	12	7
	SW/E 1	No	4	0	0	4	0
	SVVE_1	Yes	89	2	65	14	8
	SW/E 2	No	95	2	15	76	2
	SVVE_2	Yes	63	14	43	4	2
	SW/E 2	No	190	1	136	49	4
	3VVE_5	Yes	72	0	71	1	0
	SIME A	No	641	1	443	139	58
	3VVE_4	Yes	10	1	9	0	0
	FINE 1	No	65	1	14	45	5
	FIN_1	Yes	189	2	127	41	19
		No	89	1	8	70	10
		Yes	208	10	170	17	11
	EINL 2	No	224	0	167	45	12
	FIN_3	Yes	8	0	8	0	0
		No	473	14	276	158	25
	FIN_4	Yes	0	0	0	0	0
		No	1081	6	826	224	25
	FIN_5	Yes	3	0	3	0	0
4		No	394	0	250	126	18
	0_111	Yes	13	0	11	0	2
	SW/E 1	No	28	0	20	8	0
	JVVL_1	Yes	97	0	79	12	6
	SW/E 2	No	123	0	33	89	1
	JVVL_2	Yes	62	2	56	1	3
	SW/E 2	No	252	1	189	56	6
	JWL_3	Yes	21	1	18	2	0
	SW/F 4	No	371	2	287	60	22
	5002_4	Yes	9	0	9	0	0
	FIN 1	No	235	4	113	96	22
	·	Yes	83	7	65	8	3
	FIN 2	No	185	3	117	52	13
	Z	Yes	60	3	52	2	3
	EIN 6	No	88	2	56	26	4
		Yes	0	0	0	0	0
5	SW/F 1	No	85	4	59	18	4
	JVVL_1	Yes	63	0	51	8	4
	SW/F 2	No	79	2	34	38	5
	JVVL_2	Yes	24	2	21	0	1
	SW/F 3	No	45	0	39	6	0
	JVVL_3	Yes	1	0	1	0	0
	SIM/E A	No	11	0	11	0	0
	5VVL_4	Yes	0	0	0	0	0

ICEBREAKER ASSISTANCE: WINTER 2017-2018

Aker Arctic

APPENDIX 4: SUMMARY OF THE TOWING EVENTS

		ICEBRI	EAKER	TOWING: WI	NTER 2015-2016		
PERIOD	PORT_Group	TOW	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	EIN! 1	No	103	0	63	34	6
		Yes	0	0	0	0	0
	EINL 2	No	42	0	25	13	4
		Yes	0	0	0	0	0
	CIME 1	No	27	0	17	4	6
	SVVE_1	Yes	0	0	0	0	0
1	CIN/E 2	No	27	0	15	8	4
	SWE_2	Yes	0	0	0	0	0
	014/5 0	No	20	0	14	4	2
	SWE_3	Yes	0	0	0	0	0
	614/5 A	No	2	0	1	1	0
	SWE_4	Yes	0	0	0	0	0
	5111.4	No	216	0	139	60	17
	FIN_1	Yes	22	0	19	0	3
	5101 2	No	266	0	183	73	10
	FIN_2	Yes	3	0	3	0	0
	EINL 2	No	241	0	170	50	21
	FIN_5	Yes	0	0	0	0	0
	EINI 4	No	530	0	336	182	12
	FIN_4	Yes	0	0	0	0	0
		No	735	7	340	332	56
2	FIIN_3	Yes	0	0	0	0	0
2	EIN 6	No	360	2	189	138	31
	00	Yes	0	0	0	0	0
	SWF 1	No	120	0	88	18	14
	3VVL_1	Yes	1	0	1	0	0
	SWF 2	No	173	4	69	86	14
	JVVE_2	Yes	0	0	0	0	0
	SW/F 2	No	191	0	131	45	15
	3VVL_3	Yes	0	0	0	0	0
	SWF 4	No	121	0	102	15	4
	5***L_4	Yes	0	0	0	0	0
	EINI 1	No	211	0	118	72	21
1	T	Yes	31	0	31	0	0
	EIN 2	No	269	0	179	75	15
	1111_2	Yes	3	0	3	0	0
	FIN 3	No	259	2	178	52	27
		Yes	2	0	2	0	0
	FIN 4	No	563	0	345	200	18
		Yes	0	0	0	0	0
	FIN 5	No	773	3	366	354	50
	1111_5	Yes	0	0	0	0	0
5	FIN 6	No	362	4	179	155	24
		Yes	0	0	0	0	0
	SWF 1	No	95	0	61	21	13
	5002_1	Yes	2	0	1	0	1
	SWF 2	No	167	0	66	88	13
	5	Yes	5	0	5	0	0
	SWE 3	No	246	0	170	56	20
		Yes	0	0	0	0	0
	SWF 4	No	124	0	104	14	6
		Yes	0	0	0	0	0
	FIN 1	No	229	0	132	76	21
		Yes	25	0	25	0	0
	FIN 2	No	268	0	202	51	15
		Yes	3	0	3	0	0
	FIN 3	No	67	2	52	11	2
		Yes	0	0	0	0	0
	FIN 4	No	104	0	69	32	3
	···'	Yes	0	0	0	0	0
	FIN 5	No	169	2	100	59	8
4		Yes	0	0	0	0	0
	FIN_6	No	154	0	74	76	4
		Yes	0	0	0	0	0
	SWE_1	No	92	0	63	15	14
	_	Yes	0	0	0	0	0
	SWE_2	NO	109	0	55	49	5
	_	Yes	4	0	4	0	0
	SWE_3	NO	101	0	/3	19	9
		Yes	0	0	0	0	0
	SWE_4	No	44	0	42	0	2
		Yes	0	0	0	0	0
	FIN 1	No	202	0	132	54	16
		Yes	1	0	1	0	0
	FIN 2	No	52	0	44	6	2
		Yes	0	0	0	0	0
	SWE_1	No	87	0	65	12	10
5		Yes	0	0	0	0	0
-	SWE 2	No	17	0	16	1	0
		Yes	0	0	0	0	0
	SWE 3	No	2	0	2	0	0
		Yes	0	0	0	0	0
	SWE_4	No	1	0	1	0	0
		Yes	0	0	0	0	()

	ICEBREAKER TOWING: WINTER 2016-2017								
PERIOD	PORT_Group	TOW	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA		
	EINI 1	No	326	1	155	97	73		
	1111_1	Yes	16	1	15	0	0		
		No	134	0	87	32	15		
1	FIN_2	Yes	2	0	2	0	0		
I	S\A/E 1	No	61	2	45	6	8		
	3002_1	Yes	0	0	0	0	0		
		No	40	0	20	16	4		
	3VVE_2	Yes	0	0	0	0	0		
	FINE 1	No	327	0	118	85	124		
	FIN_1	Yes	38	0	36	0	2		
		No	314	5	207	80	22		
2	Z	Yes	1	0	1	0	0		
2		No	94	0	63	25	6		
	3VVE_1	Yes	0	0	0	0	0		
	SWE_2	No	154	0	76	66	12		
		Yes	1	0	1	0	0		
	FIN_1	No	285	0	108	70	107		
		Yes	30	0	27	1	2		
	FIN_2	No	293	11	198	69	15		
		Yes	2	0	2	0	0		
2	FIN_3	No	35	0	33	2	0		
5		Yes	0	0	0	0	0		
	SWE_1	No	23	0	16	5	2		
		Yes	0	0	0	0	0		
	SWE_2	No	41	0	17	22	2		
		Yes	0	0	0	0	0		
	FIN 1	No	239	0	79	92	68		
		Yes	83	0	78	0	5		
л	FIN 2	No	315	12	201	90	12		
4	1111_2	Yes	11	0	11	0	0		
	FIN 3	No	27	0	25	2	0		
	1114_5	Yes	0	0	0	0	0		
	FIN 1	No	285	6	159	101	19		
5	· · · · · _ +	Yes	3	0	3	0	0		
5	FIN 2	No	154	6	123	11	14		
	· · · · · · _ ∠	Yes	2	0	2	0	0		

Aker Arctic

PERIOD	PORT_Group	TOW	Total	Phase_0_1	EEDI_compliant	Non_compliant	NA
	FIN 1	No	241	2	129	83	27
	_	Yes	1	0	1	0	0
	FIN_2	NO	30	0	20	10	0
		No	151	2	107	32	10
1	SWE_1	Yes	0	0	0	0	0
	SW/E 2	No	78	2	52	20	4
	300L_2	Yes	0	0	0	0	0
	SWE 3	No	35	0	33	2	0
	_	Yes	0	0	0	0	0
	FIN_1	No	187	3	86	/5	23
		No	302	4	200	74	24
	FIN_2	Yes	1	0	1	0	0
		No	81	0	68	9	4
	FIIN_5	Yes	0	0	0	0	0
	FIN 4	No	22	0	12	6	4
	_	Yes	0	0	0	0	0
	FIN_5	Ves	254	4	197	43	10
2		No	283	1	175	83	24
	FIN_6	Yes	0	0	0	0	0
	SW/E_1	No	95	2	63	22	8
	5002_1	Yes	2	0	2	0	0
	SWE_2	No	161	0	63	88	10
	-	No	3	1	3	38	6
	SWE_3	Yes	0	0	0	0	0
	C14/E 4	No	76	0	65	9	2
	SWE_4	Yes	0	0	0	0	0
	FIN 1	No	178	4	82	70	22
		Yes	53	5	45	0	3
	FIN_2	No	251	7	150	73	21
		No	279	2	219	46	12
	FIN_3	Yes	0	0	0	0	0
	EINI A	No	355	4	198	130	23
	1111_4	Yes	0	0	0	0	0
	FIN_5	No	1447	4	1112	299	32
3		Yes	266	0	0	0	1
	FIN_6	Yes	2	0	0	0	2
		No	81	1	54	18	8
	SVVE_1	Yes	12	1	11	0	0
	SWE 2	No	152	14	54	80	4
	_	Yes	6	2	4	0	0
	SWE_3	Vos	262	0	207	50	4
		No	649	1	451	139	58
	SWE_4	Yes	2	1	1	0	0
	FIN 1	No	209	3	96	86	24
		Yes	45	0	45	0	0
	FIN_2	No	267	10	150	87	20
		No	30	0	175	45	12
	FIN_3	Yes	0	0	0	0	0
	EINI 4	No	473	14	276	158	25
	rin_4	Yes	0	0	0	0	0
	FIN_5	No	1084	6	829	224	25
4	_	Yes	0	0	0	126	0
	FIN_6	Yes	407	0	0	0	0
	CIA/E 4	No	121	0	95	20	6
	SWE_1	Yes	4	0	4	0	0
	SWE 2	No	183	2	88	90	3
		Yes	2	0	1	0	1
	SWE_3	NO	1	2	206	58	6
		No	379	2	295	60	22
	SWE_4	Yes	1	0	1	0	0
	EINI 1	No	317	11	177	104	25
	1.117	Yes	1	0	1	0	0
	FIN_2	No	245	6	169	54	16
	-	Yes	0	0	0	0	0
	FIN_6	Yes	0 0	0	0	0	4
_	614/5 t	No	148	4	110	26	8
5	SWE_1	Yes	0	0	0	0	0
	SWE 2	No	103	4	55	38	6
		Yes	0	0	0	0	0
	SWE_3	NO	46	0	40	6	0
		No	11	0	11	0	0
	SWE_4	Yes	0	0	0	0	0

ICEBREAKER TOWING: WINTER 2017-2018